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Abstract—We introduce an algorithm of reinforcement learn-  only possible approach. DYNA, introduced by Sutton in [10]
ing in continuous state and action spaces. In order to construct a explores the dynamics of the environment to build its model.
control policy, the algorithm utilizes the entire history of agent- Parallelly, the model is utilized to build a control policy with

environment interaction. The policy is a result of an estimation . .
process based on all available information rather than result the use of asynchronous dynamic programming (DP). In [6],

of stochastic convergence as in classical reinforcement leamning this architecture is enchanced by fireoritized sweepings an
approaches. The policy is derived from the history directly, not efficient way to implement asynchronous DP. The algorithms

through any kind of a model of the environment. [10] and [6] are based on assumptions different than A1 and
We test our algorithm in the Cart-Pole Swing-Up simulated A2 namely

environment. The algorithm learns to control this plant in about h del of th . is initiall K
100 trials, which corresponds to 15 minutes of plant's real ime. 1. The model of the environment is initially unknown.
This time is several times shorter than the one required by other 2. The entire history of agent-environment interactions can

algorithms. o _ be stored and utilized in some computational process.
Keywords: reinforcement learning, importance sampling, model- We consider these new assumptions more proper than Al and
free control - . . . .
A2 to build a reinforcement learning algorithm for use in
|. INTRODUCTION adaptive control of physical devices. Our approach is based
) ) ~on1and?2.
The most popular algorithms of Reinforcement Learning gyilding a model of the environment and its usage with
(RL) such asQ-Learning[13] and actor-critic methods [1], some form of dynamic programming may be satisfying in the

[12], [4] are implicitly based on two assumptions: case of finite state and action spaces. In such a setting, the
Al. The model of the agent's environment is initially unimodel achieved this way can be precise. In the case of con-
known. tinuous environment, the precise model is usually impossible

A2. The agent can only utilize consecutive events to ife obtain and the very idea of determining the policy directly
crementally change of some its parameters. The orftpm the experience is tempting. Such problems have already
“memory” of the past events available to the agerieen approached, see e.g. in [5]. In this paper we follow the
is very compactly represented, e.g. is in the form «fame direction, however a solution we provide is different.
eligiblity trace To show our motivation, let us discuss the following prob-

Commercial importance of such algorithms is rather little. O§M- We are given sample¥y, X5, ... from some unknown
one hand, the first assumption prevents them to be utilizedSgalar distribution. After eacith sample, we are to provide
simulations. One must know the model to build the simulatgtn approximationn; of the median of the distribution. One
What is then the sense of the assumption that the modeM@y is to employ the stochastic approximation, namely
unknown? On the other hand, utilization of consecutive steps
for incremental adjustments makes a very inefficient way of
information processing, and the learning is slow. To give amhere {3;} is a decreasing sequence which satisfies some
illustration, suppose a neural network is employed in sudtandard conditions.
algorithm and the algorithm is to learn to control a plant. How Another way is to employ an estimation, namely to take
many examples must be the network fed to be sufficiently well/2]-th highest value from among, ..., X;. Obviously,
trained? Obviously, this number is not expressed in thousaritle second way provides better approximations. It, however,
but rather in hundreds of thousand. The same network couldquires to remember the entire history of drawing and is more
however, be taught appropriate function from maybe hundredsmputationally expensive.
of training examples, yet processed repeatedly. In this paper we continue a work begun in [15] and
Usually an RL algorithm adjusts its parameters on thiatroduce an algorithm that utilizes the entire known history of
basis of the consecutive agent’s steps. It is, however, not theeractions between an agent and its environment. We argue

m; =m;—1 + [ sign(X; —m;_1)



in [15] that our algorithm is in a way similar to the onedunction V7(W¢)(s) of the current policy. The approximator

discussed in [12], [4], however, it utilizes estimation, instea@.g., a neural network) is parameterized by the weight vector

of stochastic approximation. wy . For approximatoil” to be useful in policy improvement,
The paper is organized as follows. In Section Il we discusisshould minimize the mean-square error

actor and critic components of the algorithm we introduce in _ 2

this paper. We also formulate the problem that the algorithm¥(wy,wg) = / (V”(W")(S) - V(S;Wv)) dn(s, wp)

solves. In Section 1ll we discuss the reinforcement learning ses

issue as estlmatu_)n problen_’n._ In_S_ectlon _IV we recall_ tlwith respect towy .

importance sampling and utilize it in Section V in off-line

evaluation and optimization a randomized policy. In Sectio The action-value functio™ : 5 x U — R is typically
X P . z€d policy. ECUO e fined as the expected value of future discounted rewards the
VI we introduce the Intensive Randomized Policy Optimize

(IRPO) algorithm. Sections VII and VIII are devoted to detailégﬁcr:;l:n?:1 de )f(gltlac():\fvif\?rtiggpgl(i)cmyrrtg?t esr?;tigser{fg?mg the

of IRPO implementation. In Section IX our algorithm is
applied to control of the Cart-Pole Swing-Up. Q (s,u) =& (rt+1 + AV (s141) |80 = 8, up = U) @)

Il. AN ACTOR-CRITIC ALGORITHM We are interested in parameters that govern action selection,

We discuss a discounted Reinforcement Learning problgather than particular actions. Let us define the pre-action-
[11] with continuous (possibly multi-dimensional) stateg Vvalue functionU™ : S x ® — R, as the expected value

S, continuous (possibly multi-dimensional) actionse ¢/, of future discounted rewards the agent may expect starting

rewardsr € R, and discrete time € {1,2,... }. from the states and performing an action drawn from the
distribution characterized by the parameterand following
A. Actor the policy 7 afterwards [14]:

At each states the actionu is drawn from the density
©(u, ). This density is parameterized by the vedior © C Ut(s,0) =¢ (”H TV (se1)|se = 50 ~ (., 9)>
R™ whose value is determined by parametric approximator = &Q™(s,Y) 2)
6(s; wg). The approximator is parameterized with the weight o
vectorwy. We assume thap satisfy the following conditions: Where bya ~ ¢ we mean that has distributiony, and &,
a) p(u,0) >0 forueU,0 € O, denotes the expected value calculgtgd for random véxtor
b) for everyu € U, the mapping — In ¢(u, 8) is continuous drawn frome(.,6). Note that by definition

and differentiable. ~
‘IT(WQ) _ Tr(Wg) .
For examplep(u,d) can be the normal density with the v (5)=U (S’Q(S’W")) '

meand and a constant variance where#(g, wy) can be a  Summing up our introduction to the problem, we intend to

neural network. In this example, the output of the networind w, that maximizes

determines a center of the distribution the action is drawn _

from. B D(wy) = / UT(we) (5,9(8;W9)> dn(s, wy) 3)
For the giveny and 6, the discussed action selection

mechanism forms a policy that depends onl We denote . . . . -
this policy byw(we).rlJ:or '?lhe fixed\l?va, the seyc;?e]nce of statesWh'Ch requires a solution of the auxiliary problem of mini-

seS

{s;} forms a Markov chain. Suppose;} has the stationary mization of )

distribution (s, wy). U(wy. W :/ U™W0) (s 0(s:wg)) — V(s:w dn(s,w
To determine the objective, let us define the value function( Vs wo) ( ( 005 9)) (s; V)) n(s, o)

of a generic policyr: s€s (4)

, with respect towy, .
VTi(s)=¢& Z’ert-&-l-&-i 5t =87

i>0 Ill. THE REINFORCEMENT LEARNING PROBLEM AS A
PROBLEM OF ESTIMATION

The ideal but not necessary realistic objective is to fingd i ) . . .
that maximizesV”(We)(s) for eachs. The realistic objective The algorithm we introduce in this paper, consists of two

is to maximize the averaged value function, namely activities performed simultaneously:
1) Exploration of the environment by performing consecu-
D(wy) = / V™We) () dn(s, wg) tive actions based on the current policywy).

2) Approximation of the policy iteration, which realizes

sES .-
both elements of actor-critic schemes, namely

B. Critic Policy evaluation (critic training) Adjustment of wy
In general, actor-critic algorithms employ some estimators  to minimize an estimatefft(www(,) of U(wy,wp)

of V&(wyg) to maximize®(wy). In order to construct such the based on all events up to the current step

estimators, we employ an approximaio(s; wy ) of the value Policy improvement (actor training)Adjustment ofwy



to maximize an estimat@, (wy, wy) of ®(wy) based choose the reference point. It seems reasonable taitakeal

on all events up to the current stép to some preliminary assessment&ff (Y). If this assessment
The policy employed in step (1) is the one repeatedly modifiégi correct, it bounds the absolute valuefdfY,) —a for large
by the process (2). values of the fractionp(Yy,80)/¢(Yo,80) and consequently

The po||cy is formed by the proces in a way similar t@onfines the variance of (9) Another method of suppressing
the maximum likehood estimation in which one looks for théhe variance is to replace the division of densities with
parameter that maximizes the probability that the given data ©(Yo,0)
wolud be generated. Here, we look for the parameters most p6(Yo,0,00) = min{o’,b} (20)
plausible to generate the data we would like to draw. (Yo, )

In order to construct®;(wy, wy ), we treat all previous whereb is a number greater thel equal to, say;. We obtain
statess; as drawn fromy(., wy) and approximate the integralthe estimator
with the average value

. + (f(Yo) —a)ps(Yo,6,60) (11)
== " U(si,0(s5:Wp)) (5) which is, however, biased.

i=1 The second problem is to estimatg( f(Y) — ¢)? for given
Here U is an estimator of/=we). It somehow utilizest’ ¢ an.d c. By applying the same argument as previously, we
(otherwise the critic would be useless) and heficedepends ©btain that

~

<I> Wg,wv

w\»—l

also onwy . R s 9(Yo,0)
In the same way we construdt;, namely (f(Yo) —¢) ©(Yo,00) (12)
t . . . . .
~ 1 5 is an estimator we look for, and it is unbiased. Another
_— 2 )
Vi(wy, wo) = n Z & ®)  estimator
i=1
~ 2
wheree? is an estimator of (f(Yo) = ¢)"p(Yo,0,60) (13)

~ ~ 2 has smaller variance, yet it is biased.

(U”(we) (si, 0(s;; Wo)) —V(si;wv)) )

N . V. OFF-LINE EVALUATION AND OPTIMIZATION OF
Particular forms ofU and e? may be based on importance RANDOMIZED POLICY

sampling [9] and the ideas developed by Preetpl. in e.g.

[7], [8]- We recall some basic results of importance sampling We now implement the importance sampling to constict

nd<I>t, which are the tools that allow us for off-line evaluation

IV. | MPORTANCE SAMPLING and optimization of the policyr(wy).
Suppose we are given the tripléy, Yo, f(Yo)) whereY, We are given the history of the agent-environment interac-
has been drawn from the densigy., ). Two problems are tion up to the moment: the states visiteds;,i = 1,...,1},
of interest to us. the rewards receivedr;1,i = 1,...,t}, and the control
The first problem is to estimai®, f(Y) for a giveng. The actions that have been performed, namly,i = 1....t).
quantity The actions have been drawn according ¢, 0) where
{0;,i=1,...,t} are given.
f(Yo )M (7) We wiII utiIize the derivations from the previous section.
©(Yo,0) Let us denote
is an unbiased estimator since ~
&b/ (Y). ¢ = Tit1 + YV (siy1;Wv) (14)
o, (f( ) D Y 90 > /f oz 90 ¢(z,00) dz Let us now establish relations between generic terms from the
previous section and the formulation of our problem.
/f (z,0)dz 1) Yo < u;, the drawing,
— (Y ) 2) 6y < 6;, the parameter used for drawing,
- 3) f(Yo) < Q™Wo)(s;, u,), the return;Q™Wo)(s;, u,) is

The estimator (7) is unbiased, yet its variance can be large estimated byy;, ~

when the distributionsp(.,8) and ¢(.,,) differ too much.  4) & f(Y) « U™We)(s;,0(s;; wy)), the value we want to
Bounding the variance is an issue of importance. A derivation  estimate and maximize.

similar to (8) suggests that

+ (f(Yo) —a)

is also an unbiased estimator &ff(Y) for each constant R B ) _
(non-random) reference poiat The question arise, how to e? = (qi — V(si;wv)) oo(ai, 0(si; we), 0;).

A. Evaluation
m (9) In order to constructl, (6), we need the statistics;.

Implementing (13), we introduce



Hence, in order to achieve the mean-squared approximatiaternal loop in which the agent optimizes its policy on the

of V7(We) we minimize basis of the events experienced so far.
L The exploration loop of IRPO consists of the following
~ ~ 2 ~ .
Ui(wy,wo) = = > (g5 — V(si;wy)) po(ai, 0(si; we), 0;)  StEPS: _
t i1 1) Draw the control action;:
(15) >

~ Uy N<)0('50(3t;w0))
with respect towy . Note thatV" is employed to calculatg; wherewy, is a vector calculated in the internal loop.
and, as a consequenag, should be recalculated after each 2) Perform controks;, and observe the next state,; and
step of the minimization. the reinforcement ;.

B. Opt|m|zat|0n 3) Add the qU!ntet <St,Ut,Tt+1,5t+170(5t;W9)> to the
~ ) ~ o~ dataset;wy is the same value as served to action
To construct®; (5), we need to introduc¥ (s;, 0(s;; wy)), selection.

as an estimator ol/™(Wo)(s;,6(s;; wg)). We employ the
estimator based on (11), taking(s;; wy )
point, namely

4) Sett:=t+ 1 and repeat from Step 1.

as the reference The following optimization tasks are performed by the algo-
rithm in its internal loop until convergence:

U(si,0(s:; wg)) 1) Policy evaluation. Adjustvy for V (s;; wy ) to approx-

~ ~ ot imateV7™(We)(s;) for all i € {1,...,t}, i.e. to minimize
=V(siywy) + (¢ — V(si; w i, 0(si; wp), 0;). = . e
(si3wv) + (g (i3 wv))po(1s, 0555 wo), 6:) U, (wy,wp) (15).

We thus obtain: 2) Policy improvement. Adjustvy to maximize an estima-
¢ tor of U™ (s;,0(si; we)) for all i € {1,...,¢} and fixed
(/I\)t(WQaWV) = — Z ‘7(5“WV) + (Q7 — ‘7(5“ WV))X ™= W(W@), i.e. to maXimize@t(W97WV) (17)
b It is not necessary to perform a full optimization in neither of

x py(us,0(si;wy),0;)  (16) the two steps.
B Note that the two steps of the internal loop perform the
During the maximizationd(s;; wy) should be kept within approximate policy iteration: the first step calculates the value
some bounded area far= 1,...,¢. Such the constraint is function of the current policy and the second one optimizes
necessary, otherwise the solution might not have a physitiaé first step along each trajectory.
sense, since the best policy could appear to be the one notfhe algorithm does not use a model of the environment. It

explored so far, e.g. the one with infinite parameters. utlize agent’s experience directly to build the policy. It is thus
Let us recall theeemporal difference a direct adaptive contromethod.
d; =riy1+ yﬁ(siﬂ;wv) - \7(52.; wy) VII. | MPLEMENTATION OF THE INTERNAL LOOP

On the first sight, the implementation of IRPO may seem to
be quite complicated. It encompasses two mutually dependent
N 1 ~ _ optimization processes whose complexity increase in time.
Oi(wo, wy) = 5 > dipy(ui, 0(siiwe),0:) +V (17)  Our experiments prove that the algorithm is feasible, provided
i=1 certain implementational issues are taken care of.
whereV does not depend ow,. Maximization of (17) with ~ The approach we may recommend the most employs opti-

respect tow, optimizes the first step along each trajectory. fizations of¥, and®, with the use of stochastic approxima-
changes the policy (wg) whose value functio ") should tion. Not_e _that_ both functions are constructed as certain sums.
be approximated again. Generally speaking, minimizing ¢f'€ optimization of such sums may proceed in the loop as
(15) and maximizing of (17) are mutually dependent optfollows:

mization tasks. The optimization procedure is thus associatetl. Pick a randomi € {1,...,t}. R

with problems similar to the ones associated with the classical2. Adjust wy along the gradient of-th component of,

and rewrite (16) as

policy iteration. onwy. R
I3. Adjust wy along the gradient of-th component ofd,
VI. INTENSIVE RANDOMIZED PoLicY OPTIMIZER on wg.

The discussion above leads to the algorithm of reinforcé-is suggested that the consecutive form random combina-

ment learning based on estimation which we call the Intensitiens of all numbers in(1,...,t}.

Randomized Policy Optimizer (IRPO). The IRPO algorithm If V' and 6 are implemented as neural networks, the op-
uses two parametric approximatorsas a base for random-timization problems discussed above are special version of
ized control policyw(wy) and V' to approximate the value the issue how to train the neural network when the training
function V™ (We) The algorithm is comprised of two loops:set increases due to generation of new data. We may choose
(i) an exploration loopin which the agent interacts with itsfrom among classical optimization methods or stochastic
environment and collects history of this interaction, (ii) amapproximation. Taking into account that the final training

4



set can be very large (it contains entire history of agerdigorithms. There are four state variables: position of the cart

environment interaction), the recommended choice seemsatoarc of the polew, and time derivatives:, w. There is a

be the stochastic approximation. Additionally, when neuralngle control variable, which is force applied to the cArt

networks are employed, it is wise to start the internal lodpynamics of the Cart-Pole Swing-Up, is the same as that of

when some data is already collected. Otherwise the netwotke inverted pendulum described e. g. in [1].

could get stuck in some local minima. The reward in this problem is typically equal to the elevation
We employ the above remarks in the algorithm presented the pole top. Initially, the waving pole hovers, and the

below. In the internal loop, steps 11, 12, 13 are repeatdiines rewards are close te-1. The goal of control is to avoid

after every step of the exploration loop. hitting the track bounds, swing the pole, turn it up and

stabilize upwards. Rewards are then closel tacController's

interventions take place evetyls.

We will now discuss the selection ¢f. Generally speaking,  Note thatr here is the continuous time of the plant which

the choice of the family of densitigs that governs the action remains in a simple relation with the discrete timef the
selection should depend on what kind of randomization {gntroller.

acceptable and what kind of exploration seems fruitful in The force F(r) is calculated from the action, as
the particular reinforcement learning problem. We present two

VIIl. EXAMPLES OF VALID DISTRIBUTIONS

examples illustrating the possible choices. —10 if uy < -10
o F(r)=<¢ w if u; € [—10,10]
A. Normal distribution 10 otherwise

The control selection mechanism may be designed as fo
lows. 2/ = © = R™ and the action in each state is a sum of ) : )
the actor's output and a zero-mean normal noise. The noise iStete of the plant isacceptableif and only if x(1) €
necessary for exploration and optimization of the actor. In this 2-4: 2-4]. If the next state is not acceptable then the re-
casey is a family of normal distributionsV (¢, C) of constant inforcement is set to-30 — 0.2u; — F(7)|. Otherwise, the
covariance matrix equal t6, parameterized by the expected€inforcement is determined as
value 6: ’(7) = 0.2 |us — F(7)| +{ cosw(r) if [&(7)] < 27

1 1 -1 otherwise

o(u,) = ——=exp (—(u —-0Tc(u— 9)> (18)

v 27[C| 2 The learning process consists of a sequenceials. The

The “larger” C we take, the faster will be the convergenc&ial may end in one of two possible situations. First, the
and the poorer the final performance. By manipulatiigwe Pendulum’s state may become unacceptable. It is then asso-
control a balance between the exploration and the exploitatigited with an appropriately low reinforcement. Otherwise,

lﬁe actionu; is determined every.1 second.

of the environment. the trial lasts for a random number of steps drawn from
o the geometric distribution with expected value equabBoo
B. Log-normal distribution (corresponding t&0 sec. of real time). The trial begins with

Suppose that the actions are positive real numbers. Suppaséate reset, which consists of drawir(g) andw(7) from the
also, that varying the actions within somelative distance uniform distributions/(—2.4,2.4) andU (0, 2), respectively,
from their optimal values does not affect the performan@nd settingi(r), w(r) to zero.
crucially. Let o (equal to, sayp.01) be the required relative Each approximator employed by the algorithm was imple-

accuracy. mented as a two layer perceptron with sigmoidal (arctan)
In this case we may ug® = R and a family of log-normal activation function in the hidden layer and the linear output
distributions layer. Each neuron had a constant input (bias). The initial
(Inu — 6)2 weights of the hidden layer were drawn randomly from the

p(u,0) = cavon ex (%2> normal distributionN(0,0.2) and the initial weights of the

output layer were set to zero.
To sample according to this density, one may simply take The discount factory was set t00.95. The state vectos,
a = epr whereY is drawn from the normal distribution feeding the approximators was norma”zed, name'y
N(6,02) of density (18).

Extending the discussion obove to the case of multidimen- _Ja(r) @(r) sinw(r) cosw(r) w(T) r
sional actions and is straightforward. T 1T T3 T 08 ' 08 | 4
IX. ILLUSTRATION: CART-POLE SWING-UP The exact formulation of the algorithm in use is as follows.

In th|s Section we present an experimenta| Studmténsive The formulation ConStI’ainS bOth the eXploration |00p and the
Randomized Po“cy Op“nﬂzapp“ed to a prob|em Of rein_ internal IOOp. We employed the normal fam”y Of diStributionS
forcement learning with continuous state and action spaceé.ls)-

As a platform for illustration, we chose ti@art-Pole Swing- 1) Draw the control action;:

Up [3], which is a modification of thenverted pendulum ~
frequently used as a benchmark for reinforcement learning ug ~ @(- 0(st; o))



TABLE |

X. CONCLUSIONS AND FURTHER WORK
IRPOIN COMPARISON TO KNOWN ALGORITHMS

[ Algorithm [ no of trials | real time | The algorithm of reinforcement learning in continuous space
Intensive Randomized 100 [ 15 min. of states and actions introduced in this paper seems to be
zor";%ydgpgg';jrreal_time 55— Fsire powerful enough to tackle adaptive control tasks in real time.
actor-critic method [3] Its high speed of convergence is a consequence of calculations
Standard model-free 2500 | 6 hours of the policy directly from the history of agent-environment
actor-critic methods [3], [14] interactions. No explicit model of the plant/environment is
g%‘;’;iegfong‘ﬁ'r‘;nﬂﬁ;”[ﬁﬁ 30000 3 days built, instead, the algorithm developes the control policy

_ : _ directly from available observations, thus realizing a direct
Data in columns 2 and 3 express the number of trials and the real time of E‘Sntrol scheme

plant the algorithms require to adapt the control to the unknown plant. . . .
Most algorithms of reinforcement learning suppress the
) Perf rol dob h  stad q randomization as the learning continues. This of course is also
) Perform controks;, and observe the next statg.; and  ,qsiple in IRPO. Extension of the presented methodology to

the reinforcement; ; : . L .
' ~ incorporate a decreasing exploration is a topic of our current
3) Add the five(s;, us, re41, St+1, 0(st; Wy )) to the dataset. b g &xp P

. X research.
4) (The internal loop)* If ¢ > 422, repeatn times:
a) Calculated; = 4,41 — V(s¢,; wy) if 54,41 was REFERENCES
not acceptable and; = 74, 11 +7V (st,41;Wwv) —  [1] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike
V (s4,; wy) otherwise. Adaptive Elements That Can Learn Difficult Learning Control
b) Adjust the approximation of value function: Problems, "IEEE Trans. Syst., Man, Cybervol. SMC-13, pp.
834-846, Sept.-Oct. 1983.
— v D(a. - 2] R. Coulom, Reinforcement Learning Using Neural Networks
Wy =W dipp(ug,,0(8e,;Wg), 0, ) X [2] ) g g )
v v+ B dipo b (513 Wo), 6.) with Applications to Motor ControlPhD thesis, Institut National
dV (s, ;wy) Polytechnique de Grenoble, 2002.
X dwy, [3] K. Doya, “Reinforcement learning in continuous time and
) ) space,’Neural Computation12:243-269, 2000.
c) Adjust the policy: [4] V. R. Konda and J. N. Tsitsiklis, “Actor-Critic Algorithms,"
. SIAM Journal on Control and Optimizatiolpl. 42, No. 4, pp.
_G dpy(ut,, 0(se,5 we), 0r,) Jis. 1143-1166, 2003.
9i = dB(s0.; wo) 10(st,5we) [5] M. G. Lagoudakis and R. Paar, “Model-free least-squares policy
N tir WO iteration,” Advances in Neural Information Processing Systems,
o, dO(sy;wp) volume 14, 2002.
Wy = Wg + [3; didilgi [6] A. W. Moore and C. G. Atkeson, “Prioritized Sweeping: Re-
Wo inforcement Learning with Less Data and Less Real Time,”
d) Seti:=1i+ 1. Machine LearningVol. 13, October, 1993.
5) Sett:— ¢+ 1 and repeat from Step 1. [7] D. Precup, R. S. Sutton, S. Singh, “Eligibility Traces for Off-

] ) ] ) Policy Policy Evaluation,Proceedings of the 17th International
{t;} is a random sequence of time indexes currently available Conference on Machine Learninlylorgan Kaufmann, 2000.

in the dataset (it is a “better” form of simple drawing a randont8] D. Precup, R. S. Sutton, S. Dasgupta, “Off-policy temporal-

sample from the data). Functiai is used to kee . difference learning with function approximationroceedings
WithiFr)1 a bounded are;' (15 wo) of the Eighteenth International Conference on Machine Learn-
: ing, 2001.
g if 0 € [—10,10] [9] R. Rubi_nstein,SimuIation and the monte carlo methodew
G(g,0) = { max{g,0.2} if 6 <10 York, Wiley, 1981.

[10] R. S. Sutton, “Integrated Architectures For Learning, Planning,
and Reacting Based on Approximating Dynamic Programming,”

The remaining parameters are as follows: Proceedings of the Seventh Int. Conf. on Machine Learrppg,

. 216-224, Morgan Kaufmann, 1990.
0 _ _ ) )
MV_ 20 number of h'f’de” neurons dfv [11] R. S. Sutton, A. G. BartoReinforcement Learning: An Intro-
MY = 40 — number of hidden neurons 6f.

duction MIT Press, Cambridge, MA, 1998.

min{g, —0.2} otherwise

B¢ = Y =0.001 — learning rates of) and V. [12] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy
0% = 4 — the variance ofp. Gradient Methods for Reinforcement Learning with Function
b =5 — the upper bound op. Approximation,” Advances in Information Processing Systems

12, pp. 1057-1063, MIT Press, 2000.

n = 1000 — the nu'mer of internal loop steps .per .a Smgl?lS] C. Watkins and P. Dayan, “Q-Learnindylachine Learningvol.
step of the exploration loopz = 1000 was feasible in our 8, pp. 279-292, 1992.

simulations (PC with AthloR" 1400 MHz) to be caried in real [14] p. Wawrzynski, A. Pacut, “A simple actor-critic algorithm for
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