
Appeared inProceedings of The International Joint Conference on Neural Networks, Budapest, July 2004,pp. 1091-1096,c© IEEE

Model-free off-policy reinforcement learning
in continuous environment

Paweł Wawrzýnski and Andrzej Pacut,Senior Member, IEEE
Institute of Control and Computation Engineering

Warsaw University of Technology
00–665 Warsaw, Poland

P.Wawrzynski@elka.pw.edu.pl, http://home.elka.pw.edu.pl/∼pwawrzyn
A.Pacut@ia.pw.edu.pl, http://www.ia.pw.edu.pl/∼pacut

Abstract— We introduce an algorithm of reinforcement learn-
ing in continuous state and action spaces. In order to construct a
control policy, the algorithm utilizes the entire history of agent-
environment interaction. The policy is a result of an estimation
process based on all available information rather than result
of stochastic convergence as in classical reinforcement learning
approaches. The policy is derived from the history directly, not
through any kind of a model of the environment.
We test our algorithm in the Cart-Pole Swing-Up simulated
environment. The algorithm learns to control this plant in about
100 trials, which corresponds to 15 minutes of plant’s real time.
This time is several times shorter than the one required by other
algorithms.
Keywords: reinforcement learning, importance sampling, model-
free control

I. I NTRODUCTION

The most popular algorithms of Reinforcement Learning
(RL) such asQ-Learning [13] and actor-critic methods [1],
[12], [4] are implicitly based on two assumptions:

A1. The model of the agent’s environment is initially un-
known.

A2. The agent can only utilize consecutive events to in-
crementally change of some its parameters. The only
“memory” of the past events available to the agent
is very compactly represented, e.g. is in the form of
eligiblity trace.

Commercial importance of such algorithms is rather little. On
one hand, the first assumption prevents them to be utilized in
simulations. One must know the model to build the simulator.
What is then the sense of the assumption that the model is
unknown? On the other hand, utilization of consecutive steps
for incremental adjustments makes a very inefficient way of
information processing, and the learning is slow. To give an
illustration, suppose a neural network is employed in such
algorithm and the algorithm is to learn to control a plant. How
many examples must be the network fed to be sufficiently well
trained? Obviously, this number is not expressed in thousands
but rather in hundreds of thousand. The same network could,
however, be taught appropriate function from maybe hundreds
of training examples, yet processed repeatedly.

Usually an RL algorithm adjusts its parameters on the
basis of the consecutive agent’s steps. It is, however, not the

only possible approach. DYNA, introduced by Sutton in [10]
explores the dynamics of the environment to build its model.
Parallelly, the model is utilized to build a control policy with
the use of asynchronous dynamic programming (DP). In [6],
this architecture is enchanced by theprioritized sweepingas an
efficient way to implement asynchronous DP. The algorithms
[10] and [6] are based on assumptions different than A1 and
A2, namely

1. The model of the environment is initially unknown.
2. The entire history of agent-environment interactions can

be stored and utilized in some computational process.

We consider these new assumptions more proper than A1 and
A2 to build a reinforcement learning algorithm for use in
adaptive control of physical devices. Our approach is based
on 1 and 2.

Building a model of the environment and its usage with
some form of dynamic programming may be satisfying in the
case of finite state and action spaces. In such a setting, the
model achieved this way can be precise. In the case of con-
tinuous environment, the precise model is usually impossible
to obtain and the very idea of determining the policy directly
from the experience is tempting. Such problems have already
been approached, see e.g. in [5]. In this paper we follow the
same direction, however a solution we provide is different.

To show our motivation, let us discuss the following prob-
lem. We are given samplesX1, X2, . . . from some unknown
scalar distribution. After eachi-th sample, we are to provide
an approximationmi of the median of the distribution. One
way is to employ the stochastic approximation, namely

mi = mi−1 + βi sign(Xi −mi−1)

where {βi} is a decreasing sequence which satisfies some
standard conditions.

Another way is to employ an estimation, namely to take
di/2e-th highest value from amongX1, . . . , Xi. Obviously,
the second way provides better approximations. It, however,
requires to remember the entire history of drawing and is more
computationally expensive.

In this paper we continue a work begun in [15] and
introduce an algorithm that utilizes the entire known history of
interactions between an agent and its environment. We argue

1

in [15] that our algorithm is in a way similar to the ones
discussed in [12], [4], however, it utilizes estimation, instead
of stochastic approximation.

The paper is organized as follows. In Section II we discuss
actor and critic components of the algorithm we introduce in
this paper. We also formulate the problem that the algorithm
solves. In Section III we discuss the reinforcement learning
issue as estimation problem. In Section IV we recall the
importance sampling and utilize it in Section V in off-line
evaluation and optimization a randomized policy. In Section
VI we introduce the Intensive Randomized Policy Optimizer
(IRPO) algorithm. Sections VII and VIII are devoted to details
of IRPO implementation. In Section IX our algorithm is
applied to control of the Cart-Pole Swing-Up.

II. A N ACTOR-CRITIC ALGORITHM

We discuss a discounted Reinforcement Learning problem
[11] with continuous (possibly multi-dimensional) statess ∈
S, continuous (possibly multi-dimensional) actionsu ∈ U ,
rewardsr ∈ R, and discrete timet ∈ {1, 2, . . . }.
A. Actor

At each states the actionu is drawn from the density
ϕ(u, θ). This density is parameterized by the vectorθ ∈ Θ ⊂
Rm whose value is determined by parametric approximator
θ̃(s; wθ). The approximator is parameterized with the weight
vectorwθ. We assume thatϕ satisfy the following conditions:
a) ϕ(u, θ) > 0 for u ∈ U , θ ∈ Θ,
b) for everyu ∈ U , the mappingθ 7→ lnϕ(u, θ) is continuous
and differentiable.

For example,ϕ(u, θ) can be the normal density with the
meanθ and a constant variance whereasθ̃(s,wθ) can be a
neural network. In this example, the output of the network
determines a center of the distribution the action is drawn
from.

For the givenϕ and θ̃, the discussed action selection
mechanism forms a policy that depends only onwθ. We denote
this policy byπ(wθ). For the fixedwθ, the sequence of states
{st} forms a Markov chain. Suppose{st} has the stationary
distributionη(s,wθ).

To determine the objective, let us define the value function
of a generic policyπ:

V π(s) = E

∑

i≥0

γirt+1+i

∣∣∣st = s;π

The ideal but not necessary realistic objective is to findwθ

that maximizesV π(wθ)(s) for eachs. The realistic objective
is to maximize the averaged value function, namely

Φ(wθ) =
∫

s∈S

V π(wθ)(s) dη(s,wθ)

B. Critic

In general, actor-critic algorithms employ some estimators
of ∇Φ(wθ) to maximizeΦ(wθ). In order to construct such the
estimators, we employ an approximatorṼ (s; wV) of the value

function V π(wθ)(s) of the current policy. The approximator
(e.g., a neural network) is parameterized by the weight vector
wV . For approximator̃V to be useful in policy improvement,
it should minimize the mean-square error

Ψ(wV ,wθ) =
∫

s∈S

(
V π(wθ)(s)− Ṽ (s; wV)

)2
dη(s,wθ)

with respect towV .
The action-value functionQπ : S × U 7→ R is typically

defined as the expected value of future discounted rewards the
agent may expect starting from the states, performing the
actionu, and following the policyπ afterwards [13]:

Qπ(s, u) = E
(
rt+1 + γV π(st+1)

∣∣∣st = s, ut = u
)

(1)

We are interested in parameters that govern action selection,
rather than particular actions. Let us define the pre-action-
value functionUπ : S × Θ 7→ R, as the expected value
of future discounted rewards the agent may expect starting
from the states and performing an action drawn from the
distribution characterized by the parameterθ, and following
the policyπ afterwards [14]:

Uπ(s, θ) = E
(
rt+1 + γV π(st+1)

∣∣∣st = s;ut ∼ ϕ(., θ)
)

= EθQπ(s,Y) (2)

where bya ∼ ϕ we mean thata has distributionϕ, andEθ
denotes the expected value calculated for random vectorY
drawn fromϕ(., θ). Note that by definition

V π(wθ)(s) = Uπ(wθ)
(
s, θ̃(s; wθ)

)
.

Summing up our introduction to the problem, we intend to
find wθ that maximizes

Φ(wθ) =
∫

s∈S

Uπ(wθ)
(
s, θ̃(s; wθ)

)
dη(s,wθ) (3)

which requires a solution of the auxiliary problem of mini-
mization of

Ψ(wV ,wθ)=
∫

s∈S

(
Uπ(wθ)(s, θ̃(s; wθ)

)− Ṽ (s; wV)
)2

dη(s,wθ)

(4)

with respect towV .

III. T HE REINFORCEMENT LEARNING PROBLEM AS A

PROBLEM OF ESTIMATION

The algorithm we introduce in this paper, consists of two
activities performed simultaneously:

1) Exploration of the environment by performing consecu-
tive actions based on the current policyπ(wθ).

2) Approximation of the policy iteration, which realizes
both elements of actor-critic schemes, namely
Policy evaluation (critic training). Adjustment ofwV

to minimize an estimatêΨt(wV ,wθ) of Ψ(wV ,wθ)
based on all events up to the current stept.
Policy improvement (actor training). Adjustment ofwθ

2

to maximize an estimatêΦt(wθ,wV) of Φ(wθ) based
on all events up to the current stept.

The policy employed in step (1) is the one repeatedly modified
by the process (2).

The policy is formed by the proces in a way similar to
the maximum likehood estimation in which one looks for the
parameter that maximizes the probability that the given data
wolud be generated. Here, we look for the parameters most
plausible to generate the data we would like to draw.

In order to construct̂Φt(wθ,wV), we treat all previous
statessi as drawn fromη(.,wθ) and approximate the integral
with the average value

Φ̂t(wθ,wV) =
1
t

t∑

i=1

Û(si, θ̃(si; wθ)) (5)

Here Û is an estimator ofUπ(wθ). It somehow utilizesṼ
(otherwise the critic would be useless) and henceΦ̂t depends
also onwV .

In the same way we construct̂Ψt, namely

Ψ̂t(wV ,wθ) =
1
t

t∑

i=1

ê2
i (6)

whereê2
i is an estimator of

(
Uπ(wθ)(si, θ̃(si; wθ)

)−Ṽ (si; wV)
)2
.

Particular forms ofÛ and ê2
i may be based on importance

sampling [9] and the ideas developed by Precupet al. in e.g.
[7], [8]. We recall some basic results of importance sampling.

IV. I MPORTANCE SAMPLING

Suppose we are given the triple〈θ0,Y0, f(Y0)〉 whereY0
has been drawn from the densityϕ(., θ0). Two problems are
of interest to us.

The first problem is to estimateEθf(Y) for a givenθ. The
quantity

f(Y0)
ϕ(Y0, θ)
ϕ(Y0, θ0)

(7)

is an unbiased estimator ofEθf(Y), since

Eθ0
(
f(Y)

ϕ(Y, θ)
ϕ(Y, θ0)

)
=

∫
f(z)

ϕ(z, θ)
ϕ(z, θ0)

ϕ(z, θ0) dz

=
∫
f(z)ϕ(z, θ) dz

= Eθf(Y) (8)

The estimator (7) is unbiased, yet its variance can be large
when the distributionsϕ(., θ) and ϕ(., θ0) differ too much.
Bounding the variance is an issue of importance. A derivation
similar to (8) suggests that

a+ (f(Y0)− a)
ϕ(Y0, θ)
ϕ(Y0, θ0)

(9)

is also an unbiased estimator ofEθf(Y) for each constant
(non-random) reference pointa. The question arise, how to

choose the reference point. It seems reasonable to takea equal
to some preliminary assessment ofEθf(Y). If this assessment
is correct, it bounds the absolute value off(Y0)−a for large
values of the fractionϕ(Y0, θ)/ϕ(Y0, θ0) and consequently
confines the variance of (9). Another method of suppressing
the variance is to replace the division of densities with

ρb(Y0, θ, θ0) = min
{
ϕ(Y0, θ)
ϕ(Y0, θ0)

, b

}
(10)

whereb is a number greater then1, equal to, say,5. We obtain
the estimator

a+ (f(Y0)− a)ρb(Y0, θ, θ0) (11)

which is, however, biased.
The second problem is to estimateEθ(f(Y)− c)2 for given

θ and c. By applying the same argument as previously, we
obtain that

(f(Y0)− c)2 ϕ(Y0, θ)
ϕ(Y0, θ0)

(12)

is an estimator we look for, and it is unbiased. Another
estimator

(f(Y0)− c)2ρb(Y0, θ, θ0) (13)

has smaller variance, yet it is biased.

V. OFF-LINE EVALUATION AND OPTIMIZATION OF

RANDOMIZED POLICY

We now implement the importance sampling to constructΨ̂t

andΦ̂t, which are the tools that allow us for off-line evaluation
and optimization of the policyπ(wθ).

We are given the history of the agent-environment interac-
tion up to the momentt: the states visited{si, i = 1, . . . , t},
the rewards received{ri+1, i = 1, . . . , t}, and the control
actions that have been performed, namely{ui, i = 1, . . . , t}.
The actions have been drawn according toϕ(., θi) where
{θi, i = 1, . . . , t} are given.

We will utilize the derivations from the previous section.
Let us denote

qi = ri+1 + γṼ (si+1; wV) (14)

Let us now establish relations between generic terms from the
previous section and the formulation of our problem.

1) Y0 ↔ ui, the drawing,
2) θ0 ↔ θi, the parameter used for drawing,
3) f(Y0) ↔ Qπ(wθ)(si, ui), the return;Qπ(wθ)(si, ui) is

estimated byqi,
4) Eθf(Y)↔ Uπ(wθ)(si, θ̃(si; wθ)), the value we want to

estimate and maximize.

A. Evaluation

In order to constructΨ̂t (6), we need the statisticŝe2
i .

Implementing (13), we introduce

ê2
i =

(
qi − Ṽ (si; wV)

)2
ρb(ai, θ̃(si; wθ), θi).

3

Hence, in order to achieve the mean-squared approximation
of V π(wθ), we minimize

Ψ̂t(wV ,wθ) =
1
t

t∑

i=1

(
qi − Ṽ (si; wV)

)2
ρb(ai, θ̃(si; wθ), θi)

(15)

with respect towV . Note thatṼ is employed to calculateqi
and, as a consequence,qi should be recalculated after each
step of the minimization.

B. Optimization

To construct̂Φt (5), we need to introducêU(si, θ̃(si; wθ)),
as an estimator ofUπ(wθ)(si, θ̃(si; wθ)). We employ the
estimator based on (11), taking̃V (si; wV) as the reference
point, namely

Û(si,θ̃(si; wθ))

= Ṽ (si; wV) + (qi − Ṽ (si; wV))ρb(ui, θ̃(si; wθ), θi).

We thus obtain:

Φ̂t(wθ,wV) =
1
t

t∑

i=1

Ṽ (si;wV) + (qi − Ṽ (si; wV))×

× ρb(ui, θ̃(si; wθ), θi) (16)

During the maximization,̃θ(si; wθ) should be kept within
some bounded area fori = 1, . . . , t. Such the constraint is
necessary, otherwise the solution might not have a physical
sense, since the best policy could appear to be the one not
explored so far, e.g. the one with infinite parameters.

Let us recall thetemporal difference:

di = ri+1 + γṼ (si+1; wV)− Ṽ (si; wV)

and rewrite (16) as

Φ̂t(wθ,wV) =
1
t

t∑

i=1

diρb(ui, θ̃(si; wθ), θi) + V (17)

whereV does not depend onwθ. Maximization of (17) with
respect towθ optimizes the first step along each trajectory. It
changes the policyπ(wθ) whose value functionV π(wθ) should
be approximated again. Generally speaking, minimizing of
(15) and maximizing of (17) are mutually dependent opti-
mization tasks. The optimization procedure is thus associated
with problems similar to the ones associated with the classical
policy iteration.

VI. I NTENSIVE RANDOMIZED POLICY OPTIMIZER

The discussion above leads to the algorithm of reinforce-
ment learning based on estimation which we call the Intensive
Randomized Policy Optimizer (IRPO). The IRPO algorithm
uses two parametric approximators:θ̃ as a base for random-
ized control policyπ(wθ) and Ṽ to approximate the value
function V π(wθ). The algorithm is comprised of two loops:
(i) an exploration loopin which the agent interacts with its
environment and collects history of this interaction, (ii) an

internal loop in which the agent optimizes its policy on the
basis of the events experienced so far.

The exploration loop of IRPO consists of the following
steps:

1) Draw the control actionut:

ut ∼ ϕ(., θ̃(st; wθ))

wherewθ is a vector calculated in the internal loop.
2) Perform controlut, and observe the next statest+1 and

the reinforcementrt+1.
3) Add the quintet 〈st, ut, rt+1, st+1, θ̃(st; wθ)〉 to the

dataset;wθ is the same value as served to action
selection.

4) Set t := t+ 1 and repeat from Step 1.
The following optimization tasks are performed by the algo-
rithm in its internal loop until convergence:

1) Policy evaluation. AdjustwV for Ṽ (si; wV) to approx-
imateV π(wθ)(si) for all i ∈ {1, . . . , t}, i.e. to minimize
Ψ̂t(wV ,wθ) (15).

2) Policy improvement. Adjustwθ to maximize an estima-
tor of Uπ(si, θ̃(si; wθ)) for all i ∈ {1, . . . , t} and fixed
π = π(wθ), i.e. to maximizeΦ̂t(wθ,wV) (17).

It is not necessary to perform a full optimization in neither of
the two steps.

Note that the two steps of the internal loop perform the
approximate policy iteration: the first step calculates the value
function of the current policy and the second one optimizes
the first step along each trajectory.

The algorithm does not use a model of the environment. It
utlize agent’s experience directly to build the policy. It is thus
a direct adaptive controlmethod.

VII. I MPLEMENTATION OF THE INTERNAL LOOP

On the first sight, the implementation of IRPO may seem to
be quite complicated. It encompasses two mutually dependent
optimization processes whose complexity increase in time.
Our experiments prove that the algorithm is feasible, provided
certain implementational issues are taken care of.

The approach we may recommend the most employs opti-
mizations ofΨ̂t andΦ̂t with the use of stochastic approxima-
tion. Note that both functions are constructed as certain sums.
The optimization of such sums may proceed in the loop as
follows:

I1. Pick a randomi ∈ {1, . . . , t}.
I2. Adjust wV along the gradient ofi-th component of̂Ψt

on wV .
I3. Adjust wθ along the gradient ofi-th component of̂Φt

on wθ.
It is suggested that the consecutivei-s form random combina-
tions of all numbers in{1, . . . , t}.

If Ṽ and θ̃ are implemented as neural networks, the op-
timization problems discussed above are special version of
the issue how to train the neural network when the training
set increases due to generation of new data. We may choose
from among classical optimization methods or stochastic
approximation. Taking into account that the final training

4

set can be very large (it contains entire history of agent-
environment interaction), the recommended choice seems to
be the stochastic approximation. Additionally, when neural
networks are employed, it is wise to start the internal loop
when some data is already collected. Otherwise the networks
could get stuck in some local minima.

We employ the above remarks in the algorithm presented
below. In the internal loop, steps I1, I2, I3 are repeatedn times
after every step of the exploration loop.

VIII. E XAMPLES OF VALID DISTRIBUTIONS

We will now discuss the selection ofϕ. Generally speaking,
the choice of the family of densitiesϕ that governs the action
selection should depend on what kind of randomization is
acceptable and what kind of exploration seems fruitful in
the particular reinforcement learning problem. We present two
examples illustrating the possible choices.

A. Normal distribution

The control selection mechanism may be designed as fol-
lows. U = Θ = Rm and the action in each state is a sum of
the actor’s output and a zero-mean normal noise. The noise is
necessary for exploration and optimization of the actor. In this
caseϕ is a family of normal distributionsN(θ,C) of constant
covariance matrix equal toC, parameterized by the expected
valueθ:

ϕ(u, θ) =
1√

2π|C| exp
(
−1

2
(u− θ)TC−1(u− θ)

)
(18)

The “larger” C we take, the faster will be the convergence
and the poorer the final performance. By manipulatingC, we
control a balance between the exploration and the exploitation
of the environment.

B. Log-normal distribution

Suppose that the actions are positive real numbers. Suppose
also, that varying the actions within somerelative distance
from their optimal values does not affect the performance
crucially. Let σ (equal to, say,0.01) be the required relative
accuracy.

In this case we may useΘ = R and a family of log-normal
distributions

ϕ(u, θ) =
1

σa
√

2π
exp

(
− (lnu− θ)2

2σ2

)

To sample according to this density, one may simply take
a = expY whereY is drawn from the normal distribution
N(θ, σ2) of density (18).

Extending the discussion obove to the case of multidimen-
sional actions andθ is straightforward.

IX. I LLUSTRATION: CART-POLE SWING-UP

In this section we present an experimental study ofIntensive
Randomized Policy Optimizerapplied to a problem of rein-
forcement learning with continuous state and action spaces.

As a platform for illustration, we chose theCart-Pole Swing-
Up [3], which is a modification of theinverted pendulum
frequently used as a benchmark for reinforcement learning

algorithms. There are four state variables: position of the cart
x, arc of the poleω, and time derivativeṡx, ω̇. There is a
single control variable, which is force applied to the cartF .
Dynamics of the Cart-Pole Swing-Up, is the same as that of
the inverted pendulum described e. g. in [1].

The reward in this problem is typically equal to the elevation
of the pole top. Initially, the waving pole hovers, and the
rewards are close to−1. The goal of control is to avoid
hitting the track bounds, swing the pole, turn it up and
stabilize upwards. Rewards are then close to1. Controller’s
interventions take place every0.1s.

Note thatτ here is the continuous time of the plant which
remains in a simple relation with the discrete timet of the
controller.

The forceF (τ) is calculated from the actionut as

F (τ) =

−10 if ut < −10
ut if ut ∈ [−10, 10]
10 otherwise

The actionut is determined every0.1 second.
State of the plant isacceptableif and only if x(τ) ∈

[−2.4, 2.4]. If the next state is not acceptable then the re-
inforcement is set to−30 − 0.2

∣∣ut − F (τ)
∣∣. Otherwise, the

reinforcement is determined as

r(τ) = −0.2
∣∣ut − F (τ)

∣∣ +
{

cosω(τ) if |ω̇(τ)| < 2π
−1 otherwise

The learning process consists of a sequence oftrials. The
trial may end in one of two possible situations. First, the
pendulum’s state may become unacceptable. It is then asso-
ciated with an appropriately low reinforcement. Otherwise,
the trial lasts for a random number of steps drawn from
the geometric distribution with expected value equal to300
(corresponding to30 sec. of real time). The trial begins with
a state reset, which consists of drawingx(τ) andω(τ) from the
uniform distributionsU(−2.4, 2.4) andU(0, 2π), respectively,
and settingẋ(τ), ω̇(τ) to zero.

Each approximator employed by the algorithm was imple-
mented as a two layer perceptron with sigmoidal (arctan)
activation function in the hidden layer and the linear output
layer. Each neuron had a constant input (bias). The initial
weights of the hidden layer were drawn randomly from the
normal distributionN(0, 0.2) and the initial weights of the
output layer were set to zero.

The discount factorγ was set to0.95. The state vectorst
feeding the approximators was normalized, namely

st =
[
x(τ)

2
,
ẋ(τ)

3
,

sinω(τ)
0.8

,
cosω(τ)

0.8
,
ω̇(τ)

4

]T

The exact formulation of the algorithm in use is as follows.
The formulation constrains both the exploration loop and the
internal loop. We employed the normal family of distributions
(18).

1) Draw the control actionut:

ut ∼ ϕ(., θ̃(st; wθ))

5

TABLE I

IRPO IN COMPARISON TO KNOWN ALGORITHMS.
Algorithm no of trials real time

Intensive Randomized 100 15 min.
Policy Optimizer
A model based real-time 700 2 hours
actor-critic method [3]
Standard model-free 2500 6 hours
actor-critic methods [3], [14]
Action-Dependent Heuristic 30000 3 days
Dynamic Programming [14]

Data in columns 2 and 3 express the number of trials and the real time of the
plant the algorithms require to adapt the control to the unknown plant.

2) Perform controlut, and observe the next statest+1 and
the reinforcementrt+1

3) Add the five〈st, ut, rt+1, st+1, θ̃(st; wθ)〉 to the dataset.
4) (The internal loop)1 If t > 422, repeatn times:

a) Calculatedi = rti+1 − Ṽ (sti ; wV) if sti+1 was
not acceptable anddi = rti+1 + γṼ (sti+1; wV)−
Ṽ (sti ; wV) otherwise.

b) Adjust the approximation of value function:

wV := wV + βVi diρb(uti , θ̃(sti ; wθ), θti)×

× dṼ (sti ; wV)
dwV

c) Adjust the policy:

gi = G

(
dρb(uti , θ̃(sti ; wθ), θti)

dθ̃(sti ; wθ)
, θ̃(sti ; wθ)

)

wθ := wθ + βθi di
dθ̃(sti ; wθ)

dwθ
gi

d) Set i := i+ 1.

5) Set t := t+ 1 and repeat from Step 1.

{ti} is a random sequence of time indexes currently available
in the dataset (it is a “better” form of simple drawing a random
sample from the data). FunctionG is used to keep̃θ(st; wθ)
within a bounded area:

G(g, θ) =

g if θ ∈ [−10, 10]
max{g, 0.2} if θ < −10
min{g,−0.2} otherwise

The remaining parameters are as follows:
Mθ = 20 — number of hidden neurons of̃θ.
MV = 40 — number of hidden neurons of̃V .
βθi = βVi ≡ 0.001 — learning rates of̃θ and Ṽ .
σ2 = 4 — the variance ofϕ.
b = 5 — the upper bound ofρ.
n = 1000 — the numer of internal loop steps per a single
step of the exploration loop.n = 1000 was feasible in our
simulations (PC with AthlonTM1400 MHz) to be caried in real
time of the plant.

The IRPO algorithm achieved a satisfactory behavior after
about100 trials which was equivalent to about15 minutes of
the real time of the plant (see Table I).

1There are422 weights in both networks.

X. CONCLUSIONS AND FURTHER WORK

The algorithm of reinforcement learning in continuous space
of states and actions introduced in this paper seems to be
powerful enough to tackle adaptive control tasks in real time.
Its high speed of convergence is a consequence of calculations
of the policy directly from the history of agent-environment
interactions. No explicit model of the plant/environment is
built, instead, the algorithm developes the control policy
directly from available observations, thus realizing a direct
control scheme.

Most algorithms of reinforcement learning suppress the
randomization as the learning continues. This of course is also
possible in IRPO. Extension of the presented methodology to
incorporate a decreasing exploration is a topic of our current
research.

REFERENCES

[1] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike
Adaptive Elements That Can Learn Difficult Learning Control
Problems, ”IEEE Trans. Syst., Man, Cybern., vol. SMC-13, pp.
834-846, Sept.-Oct. 1983.

[2] R. Coulom, Reinforcement Learning Using Neural Networks,
with Applications to Motor Control,PhD thesis, Institut National
Polytechnique de Grenoble, 2002.

[3] K. Doya, “Reinforcement learning in continuous time and
space,”Neural Computation,12:243-269, 2000.

[4] V. R. Konda and J. N. Tsitsiklis, “Actor-Critic Algorithms,"
SIAM Journal on Control and Optimization,Vol. 42, No. 4, pp.
1143-1166, 2003.

[5] M. G. Lagoudakis and R. Paar, “Model-free least-squares policy
iteration,” Advances in Neural Information Processing Systems,
volume 14, 2002.

[6] A. W. Moore and C. G. Atkeson, “Prioritized Sweeping: Re-
inforcement Learning with Less Data and Less Real Time,”
Machine Learning,Vol. 13, October, 1993.

[7] D. Precup, R. S. Sutton, S. Singh, “Eligibility Traces for Off-
Policy Policy Evaluation,”Proceedings of the 17th International
Conference on Machine Learning, Morgan Kaufmann, 2000.

[8] D. Precup, R. S. Sutton, S. Dasgupta, “Off-policy temporal-
difference learning with function approximation,”Proceedings
of the Eighteenth International Conference on Machine Learn-
ing, 2001.

[9] R. Rubinstein,Simulation and the monte carlo method. New
York, Wiley, 1981.

[10] R. S. Sutton, “Integrated Architectures For Learning, Planning,
and Reacting Based on Approximating Dynamic Programming,”
Proceedings of the Seventh Int. Conf. on Machine Learning,pp.
216-224, Morgan Kaufmann, 1990.

[11] R. S. Sutton, A. G. Barto,Reinforcement Learning: An Intro-
duction, MIT Press, Cambridge, MA, 1998.

[12] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy
Gradient Methods for Reinforcement Learning with Function
Approximation,” Advances in Information Processing Systems
12, pp. 1057-1063, MIT Press, 2000.

[13] C. Watkins and P. Dayan, “Q-Learning,”Machine Learning, vol.
8, pp. 279-292, 1992.

[14] P. Wawrzynski, A. Pacut, “A simple actor-critic algorithm for
continuous environments,” submitted for publication, available
at http://home.elka.pw.edu.pl/∼pwawrzyn, 2003.

[15] P. Wawrzynski, A. Pacut, “Intensive versus non-intensive actor-
critic reinforcement learning algorithms,” submitted for publica-
tion, available at http://home.elka.pw.edu.pl/∼pwawrzyn, 2004.

6

