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Abstract. Actor-Critics constitute an important class of reinforcement
learning algorithms that can deal with continuous actions and states in
an easy and natural way. In their original, sequential form, these algo-
rithms are usually to slow to be applicable to real-life problems. However,
they can be augmented by the technique of experience replay to obtain
a satisfying speed of learning without degrading their convergence prop-
erties. In this paper experimental results are presented that show that
the combination of experience replay and Actor-Critics yields very fast
learning algorithms that achieve successful policies for nontrivial control
tasks in considerably short time. Namely, a policy for a model of 6-
degree-of-freedom walking robot is obtained after 4 hours of the robot’s
time.

Keywords: reinforcement learining, actor-critics, experience replay,
neural networks.

1 Introduction

Reinforcement learning (RL) addresses the problem of an agent that optimizes
its reactive policy in a poorly structured and initially unknown environment [9].
Algorithms developed in this area can be viewed as computational processes
that transform observations of states, actions and rewards into policy parame-
ters. Several important RL algorithms, such as Q-Learning [10] and Actor-Critic
methods [2,5,6,3], process the data sequentially. Each single observation is used
for adjusting the algorithms’ parameters and then becomes unavailable for fur-
ther use. We shall call such methods sequential. They are based on a common
assumption that RL applications to real-world learning control problems require
large amounts of data which cannot be kept in a limited amount of memory
assigned to the algorithm.

Sequential algorithms do not exploit all the information contained in the data
and are known to require a large number of environment steps to obtain a satis-
fying policy. Usually, this number is large enough to make the learning process
detrimental to any real device whose control policy we would hope to optimize
by means of RL. However, there are other, non-sequential methods that require
much fewer environment steps to obtain a policy of the same quality. They
achieve this at the cost of collecting data and some extensive processing thereof.
This distinction between sequential and non-sequential algorithms should not
be confused with the distinction between online and offline algorithms. Here,
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we are interested only in online algorithms which improve the policy as the
agent-environment interaction proceeds. Online sequential and non-sequential
algorithms differ in the way of using the available computational power during
the interaction.

One of the approaches to design of non-sequential algorithms consists in
adding some non-sequential data processing to a sequential algorithm. The mod-
ified algorithm collects historical experiences (observations of states, actions and
rewards) and applies to them the operations of the original sequential algorithm
as if they have just taken place. This idea of repeating many similar operations
to the same event, called experience replay [8,7,4], was popular a few years ago
but has received little attention recently. Unfortunately, experience replay is not
automatically applicable to an arbitrary RL algorithm. In particular, it cannot
be directly combined with on-policy methods, i.e., those based on the assump-
tion that the actions producing data for policy improvements are drawn from
the current policy. Consequently, the same experience cannot be applied many
times to adjust a continuously changing policy.

In this paper we present an experimental study on experience replay and an
Actor-Critic-type learning algorithm combined in a fashion introduced in [12]. In
the study we obtain a policy of an emulated cat-like robot called Half-Cheetah
[11]. The robot is a kinematic string with 6-degrees of freedom. Its state space
is 31 dimensional. The learning goal is to make Half-Cheetah run as fast as
possible. The objective is obtained within 4 hours of Half-Cheetah time.

The paper is organized as follows. In Sec. 2 the problem of our interest is
defined along with the class of algorithms that encompasses sequential Actor-
Critics. Section 3 shows how to estimate improvement directions in the policy
parameters’ space using the data from the preceding state transition and to
accelerate a sequential algorithm by combining these estimators with experience
replay. The experimental study is presented in Sec. 4.

2 Problem Formulation

We will consider the standard RL setup [9]. A Markov Decision Process (MDP)
defines a problem of an agent that observes its state st in discrete time t =
1, 2, 3, . . . , performs actions at, receives rewards rt and moves to other states
st+1. A particular MDP is a tuple 〈S,A, Ps, r〉 where S and A are the state and
action spaces, respectively; {Ps(·|s, a) : s ∈ S, a ∈ A} is a set of state transition
distributions; we write st+1 ∼ Ps(·|st, at) and assume that each Ps is a density.
Each state transition generates a reward, rt ∈ R. Here we assume that each
reward is depends deterministically on the current action and the next state,
rt = r(at, st+1).

Actions are generated according to a policy, π, which is a family of dis-
tributions parameterized by the state and a policy vector θ ∈ Rnθ , namely
at ∼ π(· ; st, θ). The objective of reinforcement learning is to optimize θ to make
the policy maximize future rewards. This goal may be strictly specified in various
ways. We may require the policy to maximize the average reward or to maximize
the sum of future discounted rewards expected in each state.
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Below we analyze a large class of the existing sequential RL methods suitable
for policy determination in simulations and propose a way of their acceleration
based on a more extensive data processing. Our intention is to design methods
that obtain a satisfying policy after a much smaller amount of agent time but not
necessarily after a smaller amount of computation. The control efficiency should
be maximized within short period of learning to keep the controlled machine
from being damaged by too many wrong actions.

Algorithm 1. The Basic Actor-Critic. γ∈(0, 1)
is a discount factor, λ∈ [0, 1], V̄ is the value func-
tion approximator (the critic) parameterized by
vector υ. βθ

t and βυ
t are the step-sizes.

0: Set yυ = 0, yθ = 0, t := 1. Initialize θ and υ.
1: Draw the action, at ∼ π(· ; st, θ).
2: Execute at, evaluate the next state st+1 and

the reward rt.
3: Calculate the temporal difference of the

form
4: dt(υ) = rt + γV̄ (st+1;υ) − V̄ (st;υ).
5: Adjust the actor:
6: yθ := (γλ)yθ + βθ

t ∇θ lnπ(at; st, θ)
7: θ := θ + yθdt(υ)
8: Adjust the critic:
9: yυ := (γλ)yυ + βυ

t ∇υV̄ (st; υ)
10: υ := υ + yυdt(υ).
11: Set t := t + 1 and repeat from Point 1.

Sequential Actor-Critics. Actor-
Critics [2,5,6,3] constitute probably
the most efficient and the most the-
oretically developed class of rein-
forcement learning algorithms. Let
us analyze an example of methods
that will be of interest for us: the
algorithm presented in [5], quoted
in the table beside, and called here
the Basic Actor-Critic. The actor is
represented here, as usually, by the
parameterized policy π. The critic
is represented by the approximator
V̄ (s; υ) parameterized by the critic
vector υ ∈ Rnυ . The critic approx-
imates the value function V π, that
is for a given policy, π, equal to the
sum of future discounted rewards
expected in a given state, namely
V π(s) = E

(∑
i≥0 γ

irt+i

∣∣st = s, π
)
, where γ ∈ (0, 1) is a discount factor. The

values βθ
t and βυ

t are the step-sizes: they are positive reals decreasing with grow-
ing t. Also, they should satisfy the standard stochastic approximation conditions:∑

t≥1 βt = ∞,
∑

t≥1 β
2
t <∞.

Below, we provide a simplistic, appealing to intuition, analysis of this algo-
rithm. We show it as working in the following way: It increases the probability of
a given action at if it turns out to lead to higher rewards than expected in state
st. If the action turns out to lead to smaller rewards, its probability is decreased.
Namely, let us consider the total adjustment of the policy vector θ during the
work of the algorithm. To this end, we analyze the value of yθ by the end of the
algorithm’s loop. It can be seen that yθ is then equal to

yθ =
t−1∑
k=0

(γλ)kβθ
t−k∇θ lnπ(at−k; st−k, θ).

Therefore, the total adjustment is equal to

Δθ =
∑
t>0

dt(υ)
t−1∑
k=0

(γλ)kβθ
t−k∇θ lnπ(at−k; st−k, θ)
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By changing the summation order we obtain

Δθ =
∑
t>0

βθ
t ∇θ lnπ(at; st, θ)

∑
k≥0

(γλ)kdt+k(υ). (1)

We can see that an element of the above sum attributes to the state st the total
adjustment of the policy vector that the visit in this state induces. The adjust-
ment is equal to the product of a vector and a sum of scalars. The vector, ∇θ lnπ,
defines the direction in which θ must be modified to change the probability of
action at in state st. The sum,

∑
k≥0, determines whether the action at leads

to higher rewards than expected in state st (then the sum is positive and the
probability of at is increased) or at leads to smaller rewards than expected in st

(the sum is negative and the probability of at is decreased).

The critic training. A similar analysis reveals the compact form of the total ad-
justment of the critic vector. Namely, at the end of the algorithm’s loop, the
vector yυ is equal to

yυ =
t−1∑
k=0

(γλ)k∇θ lnπ(at−k; st−k, θ).

Therefore, the total adjustment of the critic vector is equal to

Δυ =
∑
t>0

βυ
t dt(υ)

t−1∑
k=0

(γλ)k∇υV̄ (st−k; υ)

By changing the summation order we obtain

Δυ =
∑
t>0

βυ
t ∇υV̄ (st; υ)

∑
k≥0

(γλ)kdt+k(υ). (2)

We can see that an element of the above sum attributes to the state st the total
adjustment of the critic vector that the visit in this state induces. In order to
understand the character of this adjustment, one may notice that the inner sum
in Eq. (2) is the same as the inner sum in Eq. (1) expressing how large future
turned out to be in comparison to expected in state st. Hence, the critic training
consists in increasing V̄ (st; υ) when actural rewards turned to be higher than
this value, and decreasing otherwise.

Generalization. In general, we will consider sequential actor-critic-type algo-
rithms characterized by the following features:

1. Actions are generated by a stationary policy (actor) i.e., a distribution π
parameterized by state st and the policy vector θ ∈ Rnθ : at ∼ π(· ; st, θ).

2. A visit in state st causes a modification of the policy vector θ by a product
βθ

t φ̂t, where φ̂t on average indicates the direction in which θ assures larger
future rewards expected in state st whereas (βθ

t , t = 1, 2, . . . ) is a vanishing
sequence of step-sizes.
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3. The algorithm may compute φ̂t with the use of an auxiliary parameters
υ ∈ Rnυ . A visit in state st results in a modification of υ by a vector βυ

t ψ̂t,

where ψ̂t on average points into the direction where υ assures better quality
of φ̂t whereas (βυ

t , t = 1, 2, . . . ) is a vanishing sequence of step-sizes.
4. The vectors φ̂t and ψ̂t, different from one another, are of the same form

Gt(θ, υ)
∑
k≥0

(αρ)kzt,k(θ, υ) (3)

where Gt is a vector defined by st and at, α ∈ [0, 1), ρ ∈ [0, 1), and zt,k ∈ R
is defined by st+k, at+k, rt+k, st+k+1, and possibly at+k+1.

In the Basic Actor-Critic algorithm mentioned above we have

φ̂t = ∇θ lnπ(at; st, θ)
∑
k≥0

(γλ)kdt+k(υ), ψ̂t = ∇υV̄ (st; υ)
∑
k≥0

(γλ)kdt+k(υ),

which means that both φ̂t and ψ̂t are of the form (3) with γλ = αρ, and

Gt(θ, υ) = ∇θ lnπ(at; st, θ), zt,k(θ, υ) = dt+k(υ)

for the actor, while for the critic those are equal to

Gt(θ, υ) = ∇υV̄ (st; υ), zt,k(θ, υ) = dt+k(υ).

Important algorithms that also fit into the discussed schema are the actor-
critics presented in [6,3] and OLPOMDP [1].

Let us analyze the average direction of φ̂t and ψ̂t. Namely, let φ be a function
defined as

φ(s, θ, υ) = Eθ,υ,β

(
φ̂t

∣∣st = s
)
. (4)

The definition of φ is based on the assumption that θ, υ, and the step-sizes
remain constant when φ̂t is calculated. In fact, they slightly vary and each φ̂t is
in fact a biased estimator of φ(st, θ, υ) for θ and υ used at time t. However, this
bias is small and since the dynamics of the parameters decreases in time, the
bias asymptotically vanishes. The average φ(s, θ, υ) weighed by the steady-state
distribution defines the direction of the drift of the policy vector.

The drift of υ may be analyzed in a similar way. Namely, let ψ be a function
defined as

ψ(s, θ, υ) = Eθ,υ,β

(
ψ̂t

∣∣st = s
)
. (5)

As above, the definition of ψ requires that θ, υ, and the step-sizes remain constant
during the time when ψ̂t is computed. The drift of υ is defined by the average
ψ(s, θ, υ) weighed by the steady-state distribution. The usual role of the drift
of the auxiliary parameter is to move it toward the point υ∗(θ) such that the
average φ(s, θ, υ∗(θ)) approximates either a policy gradient or a natural policy
gradient. Hence, adjustments of θ ultimately lead to policy improvement.
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3 Experience Replay

The main idea analyzed in this paper is to apply to the agent’s experience
the same processing as a sequential actor-critic-type algorithm would, yet more
intensively. A generic algorithm augmented by experience replay is presented in
the table below.

After each instant t, the original sequential algorithm estimates φ(st, θ, υ) i.e.,
the direction of policy improvement, and adjusts the policy vector θ along the
estimate. Within each instant t, the modified algorithm repeatedly draws one of
the recently visited states, si, estimates φ(si, θ, υ), and modifies the policy vector
along the estimate. Essentially both algorithms achieve the same goal but (i) the
modified one does it more intensively and (ii) it employs experience gathered
after visiting state si to adjust various policies characterized by different policy
vectors. The auxiliary vector υ undergoes similar operations in both algorithms.

Algorithm 2. Actor-Critic with Experience Re-
play. Estimators mentioned in Steps 6 and 7 are
based on the data in a database.

0: t := 1. Initialize θ and υ.
1: Draw and execute an action, at ∼ π(· ; st, θ).
2: Register the tuple 〈st, at, θ, rt, st+1〉 in the

database.
3: Make sure onlyN most recent tuples remain

in the database.
4: Repeat ν(t) times:
5: Draw i ∈ {t −N + 1, t−N + 2, . . . , t}.
6: Adjust θ along an estimator of φ(si, θ, υ):
7: θ := θ + βθ

t φ̂
r
i (θ, υ).

8: Adjust υ along an estimator of ψ(si, θ, υ):
9: υ := υ + βυ

t ψ̂
r
i (θ, υ).

10: Assign t := t+ 1 and repeat from Step 1.

Because the policy vector is con-
stantly changing, each time its
adjustment is performed, it is com-
puted on the basis of the new val-
ues of θ and υ. The intensity of
replaying, ν(t), must be bounded
for the sake of correctness of the
algorithm. It is also limited by the
computation power available dur-
ing the agent–environment inter-
action. ν(t) should be additionally
limited for small t to prevent many
recalculations of few tuples in the
database and to avoid overtraining.

Designing the estimators of φ
and ψ for Steps 7 and 9 of Algo-
rithm 3 we have to guarantee that
their variance is bounded and their
bias asymptotically vanishes. This is the only way for the algorithm to preserve
the limit properties of the original sequential method.

Let b > 1, θi+j be the policy vector applied to generate ai+j , and K be
drawn independently from Geom(ρ), the geometric distribution1 with parameter
ρ ∈ [0, 1). Also, let χ be equal to 0 if zt,k is not explicitly defined by at+k+1

(as in the basic AC), and to 1 otherwise (as in AC of [6]). We introduce the
randomized-truncated estimators φ̂r

i (θ, υ) and ψ̂r
i (θ, υ) of the same generic form

K∑
k=0

Gi(θ, υ)αkzi,k(θ, υ) min

⎧⎨
⎩

k+χ∏
j=0

π(ai+j ; si+j , θ)
π(ai+j ; si+j , θi+j)

, b

⎫⎬
⎭ . (6)

1 That is, random variable K of values in {0, 1, 2, . . . } has distribution Geom(ρ), iff
P (K = m) = (1 − ρ)ρm for nonnegative integer m.
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where φ̂r
i is defined by those G and z defining φ̂t, and ψ̂r

i is defined by those G
and z that define ψ̂t. We can see that (6) closely resembles the original form (3)
of φ̂t and ψ̂t with two important differences. First, the infinite sum is replaced by
the finite one with the appropriately designed random limit. Second, truncated
density ratios are introduced in order to compensate for the fact that the current
policy is different than the one that generated the actions at, at−1, . . . contained
in the database. The bias of the truncated estimator (6) is small for θ close to
θi+j for all i, j, if only g is regular in a certain sense. Properties of estimator,
bounded variance and asymptotic unbiaseness, (6) are analyzed in [12].

4 Experimental Study

We are interested in applications of the MDP framework to learning reactive
policies of machines. In this section we analyze a challenging problem of this
type, namely learning to run an emulated planar model of a large cat. The cat
robot, called Half-Cheetah [11], is presented in Fig. 1. It is a planar kinematic
string of 9 links, 8 joints, and 2 “paws”. Because 5-th joint is fixed at 180o, and
its adjacent links have the same length, joints 4-th and 6-th are always at the
same position; therefore, the object does not look like a string. The angles of
4-th and 5-th joint are fixed, all the the others are controllable. Consequently,
Half-Cheetah is a model of a 6-degree-of-freedom walking robot.

In all the experiments the controlled system is emulated i.e., simulated in real
time. A quantum of system’s real time is equal to a quantum of the corresponding
computer time, which means that the computer has a lot of spare time that can
be devoted to parallel computations. The setup of our experiments is designed to
closely resemble a situation when control of a physical machine is to be optimized
in real time by means of learning.

Fig. 1. The initial position of Half-
Cheetah. It consists of 9 links, 8
joints among which 2 are fixed (4,
5), and 2 paws (0, 9)

The torque τi applied at i-th joint
is calculated as

τi = Ti min
{

max{−1, τ0
i + a0

i }, 1
}

where τ0
i is a “spontaneous” torque

at i-th joint, a0
i is the output of the

learning controller, and Ti expresses
“strength” of i-th joint. The spon-
taneous torque τ0

i is implemented as
a PD-controller with saturation. It
roughly stabilizes the i-th joint at its
initial angle. We follow a typical set-
ting of control system design: While it is usually relatively easy to provide a
controller that stabilizes a system around a certain state (e.g. by using PD-
controllers), it is much more difficult to design a controller that makes the sys-
tem perform a certain nontrivial activity. In our paper, the controller is to learn
to make Half-Cheetah run.
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An interested reader may find a detailed description of Half-Cheetah in [11].
The discussion here will be limited to the main facts: Half-Cheetah is about 1
meter long, weighs 10kg, and the ,,strengths” of its joints vary from 30 to 120Nm.
It is designed to be a realistic model (as far as a planar model can be realistic)
of a large, yet light cat.

In order to apply the reinforcement learning to Half-Cheetah, we must define
the states and the rewards the learning algorithm has access to. Both are de-
scribed in detail in [11]. Here we only mention that state is 31-dimensional and
the main part of reward is speed measured in meters per second. There are also
other parts that play various roles in early stages of learning: (i) a penalty for an
attempt to apply torque from outside of the permissible interval, (ii) a penalty
for the internal force that keeps the joint angle within its bounds (if i-th joint
angle is equal to either of its bounds, then i-th ,,tendon” hurts the cat), (iii) a
penalty for not moving the trunk up and keeping the paws on the ground when
the animal is not moving forward, (iv) penalties for touching the ground with
the heel, the knee, and the head.

The learning algorithm. In order to make Half-Cheetah run, we combine the
Basic Actor-Critic and the idea of experience replay. The algorithm we apply
(Replaying BAC, in short) is specified below.

Algorithm 3. The Basic Actor-Critic with Experience
Replay (Replaying BAC).

0: t := 1. Initialize θ and υ.
1: Draw and execute an action, at ∼ π(· ; st, θ).
2: Register the tuple 〈st, at, θ, rt, st+1〉 in the

database.
3: Make sure only N most recent tuples remain in

the database.
4: Repeat ν(t) = min{c0, c1t} times:
5: Draw i ∈ {t−N + 1, t−N + 2, . . . , t}.

Draw K ∼ Geom(ρ).
Calculate SUM equal to∑K

k=0 α
kdi+k min

{∏k
j=0

π(ai+j ;si+j ,θ)

π(ai+j ;si+j ,θi+j)
, b

}
for di+k =ri+k+γV̄ (si+k+1; υ)−V̄ (si+k;υ).

6: Adjust θ along an estimator of φ(si, θ, υ):
7: θ := θ + βθ

t ∇θ lnπ(ai; si, θ)SUM .
8: Adjust υ along an estimator of ψ(si, θ, υ):
9: υ := υ + βυ

t ∇υV̄ (si;υ)SUM .
10: Assign t := t+ 1 and repeat from Step 1.

The policy applied to Half-
Cheetah is comprised of two
parts: a neural network and a
normal distribution. The input
of the network is the state. The
output becomes a mean value
of the normal distribution with
covariance matrix C = 52I.
The distribution generates ac-
tions. The elements of the
6-dimensional action a are
transformed into the con-
trol stimuli a0 as a0

i =
aj/30, where the indexes i =
1, 2, 3, 6, 7, 8 correspond to j =
1, 2, 3, 4, 5, 6, respectively.

The second approximator
used by the learning algorithm
is the critic, V̄ , i.e. the neu-
ral approximation of the value
function. Both the critic net-
work and the actor network have the form of two layer perceptron with linear
output layer. Their hidden layers consist of MA (the actor) and MC (the critic)
sigmoidal (arctan) elements. Each neuron has a constant input (bias). The initial
weights of the hidden layers are drawn randomly from the normal distribution
N(0, 1) and the initial weights of the output layers are set to zero.
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0

1

2

3

4

5

6

7

8

0 10000 20000 30000 40000 50000

0

1

2

3

4

5

6

7

8

0 1000 2000 3000 4000 5000

0

1

2

3

4

5

6

7

8

0 1000 2000 3000 4000 5000

c0 = 10
c0 = 30

c0 = 100

Fig. 2. Actor-Critics for Half-Cheetah: The average reward vs. trial number. Left: The
Basic Actor-Critic. Each point averages 1000 consecutive trials. The curve averages
10 runs. The one-sigma limits are calculated to assess run-to-run variability of trial
averages. Middle: The Basic AC with Experience Replay (Replaying BAC). Note that
the number of trials in this figure is about 10 times smaller than that of the top figure
for the basic method. The curve averages 5 runs and each point averages only 100
consecutive trials. Right: The Replaying BAC for various replaying intensity, c0. Each
curve averages 5 runs.

The parameters of the Basic Actor-Critic are as follows: (the actor) MA = 80,
C = 52I, (the critic) MC = 160, (step-sizes) βθ

t ≡ βυ
t ≡ 5.10−5, (estimation)

γ = 0.99, λ = 0.9. The resulting learning curves are depicted on the left-hand
part of Fig. 2. The parameters of the replaying BAC are as follows: (the actor)
MA = 80, C = 52I, (the critic) MC = 160, (step-sizes) βθ

t ≡ βυ
t ≡ 2.10−5,

(database) N = 3.104, (estimation) γ = α = 0.99, λ = ρ = 0.9, (computational
effort) c0 = 30, c1 = 0.3. With a computer equipped with Intel QuadTMQ9300,
the simulations were carried on in real time of Half-Cheetah.

Experiments. Learning curves for the setting discussed above are shown in Fig. 2.
A single trial lasts, on the average, for 5 sec. The left-hand part of Fig. 2 reports
experiments with the Basic Actor-Critic applied to Half-Cheetah. It is seen, that
the algorithm learns to control Half-Cheetah in about 3000 trials, which is about
42 hours of Half-Cheetah. The middle, and the right-hand part of Fig. 2 presents
the averaged learning curve for the Replaying BAC applied to the same problem.
The curve reports about 7 hours of learning. The algorithm learns to control
Half-Cheetah in about 4500 trials, which is about 6 hours of Half-Cheetah time.
It is interesting to observe the Half-Cheetah learned policy at various stages of
learning (Fig. 3).

Fig. 3. Typical sequences of
Half-Cheetah states at various
stages of learning by the Ba-
sic Actor-Critic with Experience
Replay (Replaying BAC).
Left: Awkward walk after 1 hour
of training.
Middle: Trot after 2.5 hours of
training.
Right: Nimble run after 7 hours
of training.
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Let us now analyze whether the concepts introduced in the paper indeed im-
prove the quality and the speed of learning. The right part of Fig. 2 demonstrates
how the intensity of the computation process translates into the speed of learn-
ing. It is seen that the larger intensity, the faster convergence. Plausibly for a
certain large c0, further increase of this parameter does not yield learning speed
improvement. However, it is quite time-consuming to investigate high values of
c0. In fact, for n > 30 the computations are too slow to take place in real time of
Half-Cheetah. The computer time of a single run is then proportional to c0 and
for c0 = 100 it is around 31 hours. Obviously, it is only a matter of computer
power. With a fast enough computer, the processing for c0 = 100 could be per-
formed in real time of Half-Cheetah. A satisfying policy could be then obtained
after 3200 trails, which is about 4 hours of Half-Cheetah time.

5 Conclusions

In this paper we combined the technique of experience replay with a sequential
Actor-Critic algorithm. Algorithms of this type deserve serious attention since
they represent the most successful approach to applying reinforcement learning
to realistic control tasks with continuous state and action spaces. As it has been
verified experimentally, experience replay gives a radical learning speedup. The
required number of interactions with the environment, which is critical for the
applicability of reinforcement learning to real-world tasks, can be considerably
reduced. For the fairly difficult Half-Cheetah task we observed a speedup factor
of 10, allowing a satisfactory policy to be reached after as little as 4 hours of Half-
Cheetah time (assuming availability of very large computation power), compared
to about 42 hours required by the Basic Actor-Critic.
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