
Distributed Operating Systems

Fault Tolerance

dr inż. Adam Kozakiewicz

akozakie@elka.pw.edu.pl

Institute of Control and Information Engineering

Warsaw University of Technology

Dept. of Electronics and Inf. Tech., WUT Distributed Operating Systems / Fault Tolerance -- p. 1/37

Fault Tolerance

1. Basic concepts – terminology

2. Process resilience
√

groups and failure masking

3. Reliable communication
√

reliable client-server communication
√

reliable group communication

4. Distributed commit
√

two-phase commit (2PC)
√

three-phase commit (3PC)

Dept. of Electronics and Inf. Tech., WUT Distributed Operating Systems / Fault Tolerance -- p. 2/37

Dependability

A component providing services to clients may require the services of other
components – in that case the component depends on some other component.

Dependability
A component C depends on C∗ if the correctness of C’s behavior depends

on the correctness of C∗’s behavior.

Properties of dependability:
√

availability – readiness for usage,
√

reliability – continuity of service delivery,
√

safety – very low probability of catastrophes,
√

maintainability – low difficulty of repair after failure.

In distributed systems components can be processes or channels.

Dept. of Electronics and Inf. Tech., WUT Distributed Operating Systems / Fault Tolerance -- p. 3/37

Fault Terminology

√
Failure: a component’s behavior violates its specifications.

√
Error: the part of the component’s state that can lead to failure.

√
Fault: the cause of an error.

Different fault management techniques:
√

Fault prevention: prevent the occurrence of a fault,
√

Fault tolerance: mask the presence of faults – build the component so

that it is able to meet its specifications in the presence of faults.
√

Fault removal: reduce the presence, number and seriousness of faults.
√

Fault forecasting: estimate the present number, future incidence and

consequences of faults.

Dept. of Electronics and Inf. Tech., WUT Distributed Operating Systems / Fault Tolerance -- p. 4/37

Types of Faults

Different types of failures. Crash failures are the least severe, arbitrary failures
– the worst.

Dept. of Electronics and Inf. Tech., WUT Distributed Operating Systems / Fault Tolerance -- p. 5/37

Failure Masking by Redundancy

A B C

A1

A2

A3

V1

V2

V3

B1

B2

B3

V4

V5

V6

C1

C2

C3

V7

V8

V9

(a)

(b)

Voter

Triple modular redundancy (TMR).

Dept. of Electronics and Inf. Tech., WUT Distributed Operating Systems / Fault Tolerance -- p. 6/37

Process Resilience

Process groups: protection against faulty processes is possible by replicating
and distributing computations in a group.

(a) (b)

Flat group Hierarchical group Coordinator

Worker

a. flat groups: very good fault tolerance due to immediate information
exchange in the whole group. Difficult to implement, increases overhead
(many messages, completely distributed control).

b. hierarchical groups: a single coordinator, not very fault tolerant (single
point of failure) or scalable, but easy to implement.

Dept. of Electronics and Inf. Tech., WUT Distributed Operating Systems / Fault Tolerance -- p. 7/37

Groups and Failure Masking (1)

Group tolerance
If a group can mask any k concurrent member failures, it is k-fault tolerant.

k is called degree of fault tolerance.

What is the minimum size of a k-fault tolerant group of identical processes
processing the same input in the same order?

√
crash or performance failure semantics⇒ k + 1

√
arbitrary failure semantics, using voting⇒ 2k + 1

Dept. of Electronics and Inf. Tech., WUT Distributed Operating Systems / Fault Tolerance -- p. 8/37

Groups and Failure Masking (2)

Assumption: distributed computation, that is the members are not identical.

Problem: nonfaulty group members should reach agreement on the same
value.

In arbitrary failure semantics 3k + 1 group members are necessary.

At least 2k + 1 loyalists are needed to reach a majority vote in the presence of k
traitors. This type of situation is called a Byzantine failure.

Dept. of Electronics and Inf. Tech., WUT Distributed Operating Systems / Fault Tolerance -- p. 9/37

Groups and Failure Masking (3)

1 2

3 4

1

2

2 4

z

4
1 x

1

4

y

2

1
2
3
4

Got(
Got(
Got(
Got(

1, 2, x, 4
1, 2, y, 4
1, 2, 3, 4
1, 2, z, 4

)
)
)
)

1 Got 2 Got 4 Got
(((
(((
(((

1, 1, 1,
a, e, 1,
1, 1, i,

2, 2, 2,
b, f, 2,
2, 2, j,

y, x, x,
c, g, y,
z, z, k,

4 4 4
d h 4
4 4 l

)))
)))
)))

(a) (b) (c)
Faulty process

The byzantine generals problem for 3 loyal generals and one traitor.

a. generals announce their troop strengths (in thousands of soldiers).

b. each general assembles a vector of values and announces it.

c. in the end all generals have a set of vectors large enough to find the
right answers.

Dept. of Electronics and Inf. Tech., WUT Distributed Operating Systems / Fault Tolerance -- p. 10/37

Groups and Failure Masking (4)

1

23

1
21

x

y

2 1
2
3

Got(
Got(
Got(

1, 2, x
1, 2, y
1, 2, 3

)
)
)

1 Got 2 Got
((
((
1, 1,
a, d,

2, 2,
b, e,

y x
c f

))
))

(a) (b) (c)
Faulty process

The same example with too few loyal generals.

Dept. of Electronics and Inf. Tech., WUT Distributed Operating Systems / Fault Tolerance -- p. 11/37

Reliable Communication

Methods for providing reliable communication channels

Error detection:
√

use checksums in the packets/frames to allow for bit error detection,
√

number the frames to detect packet loss.

Error correction:
√

add enough redundancy (e.g. better checksums) to allow automatic

correction of corrupted packets,
√

request retransmission of lost (or last N) packets.

We assume point-to-point communication in most of this lecture.

Dept. of Electronics and Inf. Tech., WUT Distributed Operating Systems / Fault Tolerance -- p. 12/37

Reliable RPC (1)

What can go wrong during RPC?

1. the client cannot locate the server

2. the request is lost

3. the server crashes

4. the response is lost

5. the client crashes

Solutions:

1: Trivial – just inform the client process.

2: No problem – resend the message.

3: Difficult – the server is down and nobody knows for sure what was
done and what wasn’t completed.

Dept. of Electronics and Inf. Tech., WUT Distributed Operating Systems / Fault Tolerance -- p. 13/37

Reliable RPC (2)

A contract is necessary – the client must know, what to expect from the server.

Receive Receive Receive
Execute Execute Crash
Reply Crash

REQ REQ REQ

REP No REP No REP

ServerServerServer

(a) (b) (c)

(a) normal case (b) crash after execution (c) crash before execution.

Possible RPC server semantics:
√

at-least-once-semantics: the server guarantees that if a request was

received, the requested operation will be executed at least once,
whatever happens.

√
at-most-once-semantics: the server guarantees that if a request was

received, the requested operation will be executed at most once,
whatever happens.

Dept. of Electronics and Inf. Tech., WUT Distributed Operating Systems / Fault Tolerance -- p. 14/37

Reliable RPC (3)

4: Difficult – for the client it looks exactly the same as a crash.

Possible solution: none. Idempotent operations do help, though
(operations that can be repeated without ill effects).

5: Problem – the server is wasting resources (orphan computation).

Possible solutions::

⋆ clients kill all orphans after restart,

⋆ epoch numbers broadcasted when recovering let the servers do
the killing,

⋆ timeout – computations must finish and succesfully return the
result in a given time, orphans die automatically.

Dept. of Electronics and Inf. Tech., WUT Distributed Operating Systems / Fault Tolerance -- p. 15/37

Reliable Multicasting (1)

Basic model: a multicast channel c with two (possibly ovelapping) groups of
processes:
√

the sender group S ND(c) – processes that submit messages to channel
c,

√
the receiver group RCV(c) – processes that can receive messages from

channel c.

Simple reliability If process P ∈ RCV(c) at the time message m was
submitted to c and P didn’t leave RCV(c), then m should be delivered to
P.

Atomic multicast A message m submitted to channel c, it will either be
delivered to all processes Pi ∈ RCV(c) or none.

Dept. of Electronics and Inf. Tech., WUT Distributed Operating Systems / Fault Tolerance -- p. 16/37

Reliable Multicasting (2)

In a LAN, reliable multicast is relatively easy:

The sender logs messages submitted to c:
√

when P sends message m, P also stores it in the history buffer,
√

each receiver acknowledges the receipt of m, or requests retransmission

if the message was lost (lack of acknowledgement can be treated as
retransmission request),

√
the sender P removes m from history buffer after receiving all expected

acknowledgments.

This algorithm doesn’t scale!
√

if RCV(c) is large, P will be swamped with feedback (ACKs and NACKs),
√

the sender P must know all members of RCV(c), or at least their number.

Dept. of Electronics and Inf. Tech., WUT Distributed Operating Systems / Fault Tolerance -- p. 17/37

Basic Reliable Multicasting Schemes

Sender

Sender

Receiver

Receiver

Receiver

Receiver

Receiver

Receiver

Receiver

Receiver

History
buffer

M25

M25

M25

M25

M25

M25

M25

M25

Last = 24

Last = 25

Last = 23

Last = 23

Last = 24

Last = 24

Last = 24

Last = 24

Receiver missed
message #24

ACK 25 ACK 25
ACK 25Missed 24

Network

Network

(a)

(b)

M25

A simple solution to reliable multicasting when all members of RCV(c) are
known and reliable.

Dept. of Electronics and Inf. Tech., WUT Distributed Operating Systems / Fault Tolerance -- p. 18/37

Scalable RM: Feedback Suppression

Idea: process P suppresses its own feedback when it notices another
process Q already asking for retransmission.
Assumptions:
√

all receivers listen also to the common feedback channel,
√

each process P schedules its feedback randomly (adding delay) and

suppresses it if another feedback message is observed,
√

random schedule ensures that usually only one feedback message is
sent.

NACK

NACK

NACK NACK NACK
T=3 T=4 T=1 T=2

Sender Receiver Receiver Receiver Receiver

Network

Receivers suppress their feedbackSender receives
only one NACK

Dept. of Electronics and Inf. Tech., WUT Distributed Operating Systems / Fault Tolerance -- p. 19/37

Scalable RM: Hierarchical Solutions

Idea: the feedback channel should be hierarchical, with all feedback messages
sent only to the root. The intermediate nodes aggregate feedback before
passing it on.

Main challenge: dynamic construction of feedback trees.

C
C

S

(Long-haul) connection
Sender

Coordinator

Root
R

Receiver

Local-area network

Dept. of Electronics and Inf. Tech., WUT Distributed Operating Systems / Fault Tolerance -- p. 20/37

Atomic Multicast

Idea: formulate reliable multicasting in terms of process groups in the presence
of process failures and changes to group membership.

Guarantee: the message will be delivered to all non-faulty members of the
current group and only to them. All members must agree on the current group
membership.

Keyword: virtually synchronous multicast.

P1 joins the group P3 crashes P3 rejoins

G = {P1,P2,P3,P4} G = {P1,P2,P4} G = {P1,P2,P3,P4}

Partial multicast
from P3 is discarded

P1

P2

P3

P4

Time

Reliable multicast by multiple
point-to-point messages

Dept. of Electronics and Inf. Tech., WUT Distributed Operating Systems / Fault Tolerance -- p. 21/37

Virtual Synchrony (1)

Network

Message is received by communication layer

Message is delivered to application

Message comes in from the network
Local OS

Comm. layer

Application

Logical organization of a distributed system – message delivery and receipt are
two different events!

Dept. of Electronics and Inf. Tech., WUT Distributed Operating Systems / Fault Tolerance -- p. 22/37

Virtual Synchrony (2)

Idea: We consider views V ⊆ RCV(c) ∪ S ND(c).

Processes are added or removed from V through view changes to V∗. The view
change is executed locally by each process P ∈ V ∩ V∗.

1. For each consistent state, there is a unique view on which all its
members agree. Note: this implies, that all non-faulty processes see all
view changes in the same order.

2. If a message m was sent to V before a view change vc to V∗, then either
all P ∈ V that execute vc receive m, or none of them. Note: all non-faulty
members in the same view receive the same set of multicast messages.

3. A message m sent to view V can only be delivered to processes in V and
is discarded by successive views.

A reliable multicast algorithm satisfying 1. – 3. is virtually synchronous.

Dept. of Electronics and Inf. Tech., WUT Distributed Operating Systems / Fault Tolerance -- p. 23/37

Virtual Synchrony (3)

Note: the sender of a message m to view V does not have to be a member of V.

If the sender S is in V and crashes, then m is flushed before S is removed from
V: m will never be delivered after the point that S < V.

Note: messages from S may still be delivered to all (or none) non-faulty
members of V before they all agree on the new view without S in it.

If a receiver P fails, the message m may be lost, but we know exactly what was
received in V, so it can be recovered. Alternatively, we can deliver m to all
messages in V − P.

Observation: Virtually synchronous behavior can be seen independent from
the ordering of messages. The only issue is that messages are delivered to an
agreed upon group of receivers.

Dept. of Electronics and Inf. Tech., WUT Distributed Operating Systems / Fault Tolerance -- p. 24/37

Virtually Synchronous Reliable Multicasting

Different versions of virtually synchronous reliable multicasting.

Dept. of Electronics and Inf. Tech., WUT Distributed Operating Systems / Fault Tolerance -- p. 25/37

Virtual Synchrony – Implementation

1

2

4

0

5

6

3

7

1

2

4

0

5

6

3

7

1

2

4

0

5

6

3

7

(a) (b) (c)

View change

Unstable
message

Flush message

a. 4 sees that 7 crashed and broadcasts a view change,

b. 6 sends all its unstable messages, followed by a flush message,

c. when 6 receives a flush message from all others, it installs the new view.

Dept. of Electronics and Inf. Tech., WUT Distributed Operating Systems / Fault Tolerance -- p. 26/37

Distributed Commit

√
Two-phase commit (2PC)

√
Three-phase commit (3PC)

Essential issue: How to ensure atomicity of commits in a distributed
computation? In other words, how to make sure, that in a group of processes
either all processes introduce a change of state, or none of them do?

Dept. of Electronics and Inf. Tech., WUT Distributed Operating Systems / Fault Tolerance -- p. 27/37

Two-Phase Commit (1)

Model: The client who initiated the computation acts as coordinator, the
processes required to commit are the participants.

Phase 1a The coordinator sends VOTE˙REQUEST to all participants (also
called a pre-write).

Phase 1b When a participant receives VOTE˙REQUEST it replies with a YES

or NO. In the latter case the local computation is aborted.

Phase 2a The coordinator collects all votes. If all votes are YES, it sends
COMMIT to all participants, otherwise it sends ABORT.

Phase 2b Participants await a COMMIT or an ABORT message and react
accordingly.

Dept. of Electronics and Inf. Tech., WUT Distributed Operating Systems / Fault Tolerance -- p. 28/37

Two-Phase Commit (2)

COMMIT COMMIT

INIT INIT

WAIT READY

ABORT ABORT

Commit
Vote-request

Vote-request
Vote-commit

Vote-request
Vote-abort

Vote-abort
Global-abort

Global-abort
ACK

Vote-commit
Global-commit

Global-commit
ACK

(a) (b)

a. the finite state machine for the coordinator,

b. the finite state machine for the participant.

Dept. of Electronics and Inf. Tech., WUT Distributed Operating Systems / Fault Tolerance -- p. 29/37

2PC – Failing Participant (1)

If a participant crashes in one of its states and subsequently recovers, its
actions depend on the last remembered state.

INIT no problem – the participant didn’t even know that the protocol started.

READY the participant is waiting for a COMMIT or an ABORT, so it must now
contact the coordinator (single point of failure after the protocol has
ended!) or another participant to know the decision.

ABORT just abort (entry into the abort state should be idempotent).

COMMIT just commit (entry into the commit state should also be idempotent).

Temporary workspaces make this simpler (abort/commit is idempotent in this
case).

Dept. of Electronics and Inf. Tech., WUT Distributed Operating Systems / Fault Tolerance -- p. 30/37

2PC – Failing Participant (2)

Contacting other participants instead of the coordinator:
A recovering participant P contacts participant Q:

If all participants are in the READY state, then the protocol blocks. Apparently
the coordinator is failing.

Dept. of Electronics and Inf. Tech., WUT Distributed Operating Systems / Fault Tolerance -- p. 31/37

2PC – Coordinator

Dept. of Electronics and Inf. Tech., WUT Distributed Operating Systems / Fault Tolerance -- p. 32/37

2PC – Participant

Dept. of Electronics and Inf. Tech., WUT Distributed Operating Systems / Fault Tolerance -- p. 33/37

2PC – Handling Decision Requests

Actions for handling decision requests (recovery protocol), executed by a
separate thread.

Dept. of Electronics and Inf. Tech., WUT Distributed Operating Systems / Fault Tolerance -- p. 34/37

Three-Phase Commit (1)

Problem: with 2PC, when the coordinator crashes, the participants may not be
able to reach a final decision and may need to remain blocked until the
coordinator recovers.

Solution: three-phase commit protocol (3PC). The states of the coordinator
and each participant should satisfy the following conditions:

√
there is no single state, from which a direct transition to either a

COMMIT or ABORT state is possible,
√

there is no single state in which it is not possible to make a final

decision, but from which a transition to a COMMIT state can be made.

Note: 3PC is rarely used, as 2PC is usually good enough.

Dept. of Electronics and Inf. Tech., WUT Distributed Operating Systems / Fault Tolerance -- p. 35/37

Three-Phase Commit (2)

Phase 1a The coordinator sends VOTE˙REQUEST to all participants.

Phase 1b Participants respond to VOTE˙REQUEST with YES or NO – in the
latter case the local computation is aborted.

Phase 2a The coordinator collects all votes. If all participants voted YES,
then PREPARE is sent, otherwise ABORT is sent and the coordinator’s
role ends.

Phase 2b All participants wait for PREPARE or ABORT. If PREPARE was
received, it is acknowledged with ACK, otherwise the participant aborts
and it’s role ends.

Phase 3a The coordinator waits until all participants confirm the receipt of
PREPARE, then it sends COMMIT to all participants.

Phase 3b All participants wait for COMMIT and react to it.

Dept. of Electronics and Inf. Tech., WUT Distributed Operating Systems / Fault Tolerance -- p. 36/37

Three-Phase Commit (3)

PRECOMMITPRECOMMIT

COMMITCOMMIT

INIT INIT

WAIT READY

ABORT ABORT

Commit
Vote-request

Vote-request
Vote-commit

Vote-request
Vote-abort

Vote-abort
Global-abort

Global-abort
ACK

Vote-commit
Prepare-commit

Prepare-commit
Ready-commit

(a) (b)

Global-commit
ACK

Ready-commit
Global-commit

a. finite state machine for the coordinator,

b. finite state machine for the participant.

Dept. of Electronics and Inf. Tech., WUT Distributed Operating Systems / Fault Tolerance -- p. 37/37

	Fault Tolerance
	Dependability
	Fault Terminology
	Types of Faults
	Failure Masking by Redundancy
	Process Resilience
	Groups and Failure Masking (1)
	Groups and Failure Masking (2)
	Groups and Failure Masking (3)
	Groups and Failure Masking (4)
	Reliable Communication
	Reliable RPC (1)
	Reliable RPC (2)
	Reliable RPC (3)
	Reliable Multicasting (1)
	Reliable Multicasting (2)
	Basic Reliable Multicasting Schemes
	Scalable RM: Feedback Suppression
	Scalable RM: Hierarchical Solutions
	Atomic Multicast
	Virtual Synchrony (1)
	Virtual Synchrony (2)
	Virtual Synchrony (3)
	Virtually Synchronous Reliable Multicasting
	Virtual Synchrony -- Implementation
	Distributed Commit
	Two-Phase Commit (1)
	Two-Phase Commit (2)
	2PC -- Failing Participant (1)
	2PC -- Failing Participant (2)
	2PC -- Coordinator
	2PC -- Participant
	2PC -- Handling Decision Requests
	Three-Phase Commit (1)
	Three-Phase Commit (2)
	Three-Phase Commit (3)

