
Distributed Operating Systems

Communication 1

Ewa Niewiadomska-Szynkiewicz

ens@ia.pw.edu.pl

Institute of Control and Computation Engineering

Warsaw University of Technology

E&IT Department, WUT DOS / Communication 1 – p. 1

Communication (I)

1. Layered Protocols

2. Remote Procedure Call

3. Remote Object Invocation

E&IT Department, WUT DOS / Communication 1 – p. 2

Necessary Agreements

Communication in distributed systems is always based on low-level message
passing.

Communication through message passing is harder than using primitives
based on shared memory.

√

How many volts should be used to signal a 0-bit, and how many for a

1-bit?
√

How does the receiver know which is the last bit of the message?
√

How can it detect if a message has been damaged or lost?
√

How long are numbers, strings and other data items?
√

How are they represented?

E&IT Department, WUT DOS / Communication 1 – p. 3

Protocols – Introduction

To allow a group of computers to communicate over a network, they must all
agree on the protocols to be used.

Example protocol as a discussion:

A: Please, retransmit message n,

B: I already retransmitted it,

A: No, you did not,

B: Yes, I did,

A: All right, have it your way, but send it again.

E&IT Department, WUT DOS / Communication 1 – p. 4

OSI Model

The International Standards Organization (ISO) developed a reference model:

ISO OSI = OSI Model = Open Systems Interconnection Reference Model

The OSI model is designed to allow open systems to communicate.
Open system: a system that is prepared to communicate with any other open

system by using standard rules that govern:
√

format,
√

contents,
√

meaning

of the messages sent and received.
These rules are formalized – protocols.

OSI model is useful for understanding computer networks.
Protocols that were developed as part of the OSI model were never widely
used.

E&IT Department, WUT DOS / Communication 1 – p. 5

Protocol – Definition

Protocol
A well-known set of rules and formats to be used for communication

between processes in order to perform a given task.

Two important parts of the definition:
√

a specification of the sequence of messages that must be exchanged,
√

a specification of the format of the data in the messages.

How to create protocols:

On the Design of Application Protocols, RFC 3117,

http://www.rfc-editor.org/rfc/rfc3117.txt

E&IT Department, WUT DOS / Communication 1 – p. 6

Types of Protocols

A distinction is made between two general types of protocols:

√

connection-oriented protocols: the sender and receiver first explicitly

establish a connection before exchanging data,
√

connectionless protocols: the sender transmits the first message when it

is ready (no setup between sender and receiver in advance is needed).

Example of connectionless protocols: dropping a letter in a mailbox.

With computers, both connection-oriented and connectionless communication
are common.

protocol suite = protocol stack = the collection of protocols used in a

particular system.

E&IT Department, WUT DOS / Communication 1 – p. 7

Layered Protocols (1)

Physical

Data link

Network

Transport

Session

Application

Presentation

Application protocol

Presentation protocol

Session protocol

Transport protocol

Network protocol

Data link protocol

Physical protocol

Network

1

2

3

4

5

7

6

E&IT Department, WUT DOS / Communication 1 – p. 8

Layered Protocols (2)

√

Each Layer deals with one specific aspect of the communication.
√

Each Layer provides an interface to the one above it.
√

The interface consists of a set of operations that together define the

service the layer is prepared to offer its users.

Process A on machine 1 wants to communicate with process B on

machine 2

√

process A builds a message and passes it to the application layer on

machine 1,
√

the application layer software adds a header to the front of the
message,

√

the application layer passes the message to the presentation layer

(across layer 6/7 interface),
√

the presentation layer adds its own header and passes the message to

the session layer, etc...
√

the physical layer transmits the message.
E&IT Department, WUT DOS / Communication 1 – p. 9

Layered Protocols Encapsulation

Encapsulation : a protocol at a higher level uses a protocol at a lower level to
help accomplish its aims.
Encapsulation is used to provide abstraction of protocols and services.

Data link layer header

Network layer header

Transport layer header
Session layer header

Presentation layer header

Application layer header

Message

Bits that actually appear on the network

Data link
layer trailer

A typical message as it appears on the network.

E&IT Department, WUT DOS / Communication 1 – p. 10

Lower-Level Protocols

Physical layer
Contains the specification and implementation of bits, and their

transmission between sender and receiver (just sends bits). The physical
layer protocol deals with standardizing the electrical, mechanical, and
signaling interfaces.

Data link layer

Describes the transmission of a series of bits into a frame to allow error
and flow control. It marks each frame (puts a special bit pattern on the start
and end of a frame) and computes a checksum by adding up all the bytes in
the frame in a certain way.
Network layer

Describes how packets in a network of computers are to be routed
(different routing algorithms).
Transport Layer

Provides the actual communication facilities for most distributed systems.
Provides reliable connection, schedules data (w.r.t. priorities). Upon receiving
a messages from the application layer, the transport layer breaks it into
pieces small enough to transmission, assigns each one a sequence number,
and then sends them all.

E&IT Department, WUT DOS / Communication 1 – p. 11

Data Link Layer

Data 0

Data 0

Data 0

Data 0

Data 1

Data 1

Data 0

Data 0

Control 0

Control 1

Control 1

Control 0

A sends data message 0

B gets 0, sees bad checksum

A sends data message 1
B complains about the checksum

Both messages arrive correctly

A retransmits data message 0
B says: "I want 0, not 1"

Both messages arrive correctly

A retransmits data message 0 again

B finally gets message 0

0

1

2

3

4

5

6

7

Time A B Event

Discussion between a receiver and a sender in the data link layer.

E&IT Department, WUT DOS / Communication 1 – p. 12

Network Layer Protocols

√

IP (Internet Protocol): connectionless, part of the Internet protocol suite.

IP packet is routed to its destination independent of all others. No
internal path is selected and remembered.

√

ATM virtual channels (Asynchronous Transfer Mode):

connection-oriented.
Unidirectional connection from a source to destination, crossing several
intermediate ATM switches.
Virtual path (collection of virtual channels) - predefined routes between

pairs of hosts.

Packet: a unit of data that is routed between an origin and a destination on
the Internet or any other packet-switched network. It consists of IP header and
variable-length data field.
Datagram: a self-contained, independent entity of data carrying sufficient

information to be routed from the source to the destination computer without
reliance on earlier exchanges between this source and destination computer
and the transporting network.

E&IT Department, WUT DOS / Communication 1 – p. 13

Transport Layer Protocols

√

TCP (Transmission Control Protocol): connection-oriented, reliable,

stream-oriented communication (TCP/IP - standard for network
communication).

√

UDP (Universal Datagram Protocol): connectionless, unreliable

(best-effort) datagram communication.
√

RTP (Real-time Transport Protocol : specifies packet formats for

real-time data without providing the actual mechanisms for
guaranteeing data delivery.

√

TP0 – TP4, the official ISO transport protocols.

E&IT Department, WUT DOS / Communication 1 – p. 14

Lower-Level Protocols - summary

Layers 2, 3, 4 provide connection of processes to the wide area networks.

Data Link Layer: connects neighbors (computers) into the Local Area

Networks (LANs).
Network Layer: connects local networks into wider structures (example:

Internet).
Transport Layer: provides connection for distributed systems.

Layers 2 and 3 connect devices, layer 4 connects processes.

E&IT Department, WUT DOS / Communication 1 – p. 15

Higher-Level layers

Session Layer
Provides dialog control, to keep track of which party is currently talking,

and it provides synchronization facilities.

Presentation Layer
Provides facilities allowing machines with different internal representation

to communicate.

Application Layer

A container for all applications and protocols that do not fit into one of the
underlaying layers (examples: e-mail, WWW, FTP, HTTP, etc.

E&IT Department, WUT DOS / Communication 1 – p. 16

Client-Server TCP

SYN,request,FIN

SYN,ACK(FIN),answer,FIN

ACK(FIN)

SYN

SYN,ACK(SYN)

ACK(SYN)
request

FIN

ACK(req+FIN)

answer
FIN

ACK(FIN)

Client ClientServer Server

Time Time

1 1

2 2

3 3
4
5

6

7
8

9

(a) (b)

(a) Normal operation of TCP. (b) Transactional TCP.

E&IT Department, WUT DOS / Communication 1 – p. 17

Middleware Protocols (1)

Middleware
An application that logically lives in the application layer, but which

contains many general-purpose protocols that warrant their own layers,
independent of other, more specific applications.

Middleware invented to provide common services and protocols that can be
used by many different applications:

Example protocols:
√

open communication protocols,
√

marshaling and unmarshaling of data, for systems integration,
√

naming protocols, for resource sharing,
√

security protocols, distributed authentication and authorization,
√

scaling mechanisms, support for caching and replication.

E&IT Department, WUT DOS / Communication 1 – p. 18

Middleware Protocols (2)

Physical

Data link

Network

Transport

Middleware

Application
Application protocol

Middleware protocol

Transport protocol

Network protocol

Data link protocol

Physical protocol

Network

1

2

3

4

5

6

An adapted ISO OSI reference model for networked communication.
Instead of session and presentation layers we have middleware layer.

E&IT Department, WUT DOS / Communication 1 – p. 19

High-level Middleware Communication Services

Some of high-level middleware communication protocol types:

1. remote procedure call,

2. remote object invocation,

3. message queuing services,

4. stream-oriented communication.

E&IT Department, WUT DOS / Communication 1 – p. 20

Local Procedure Call

count=read(fd, buf, bytes)

local variables local variables
Main program's Main program's

Stack pointer

(a) (b)

bytes
buf
fd
return address
read's local
variables

Parameter passing:

a. the stack before
the call.

b. the stack while
the called proce-
dure is active.

√

Application developers familiar with simple procedure model,
√

Procedures as black boxes (isolation),
√

No fundamental reason not to execute procedures on separate machine.

E&IT Department, WUT DOS / Communication 1 – p. 21

Remote Procedure Call

When we try to call procedures located on other machines, some subtle
problems exist:

√

different address spaces,
√

parameters and results have to be passed,
√

both machines may crash.

Standard function call parameters types:

√

call-by-value,
√

call-by-reference,
√

call by copy/restore.

E&IT Department, WUT DOS / Communication 1 – p. 22

Principle of RPC

Call local procedure
and return results

Call remote
procedure

Return
from call

Client

Request Reply

Server
Time

Wait for result

Principle of RPC between a client and server program.

E&IT Department, WUT DOS / Communication 1 – p. 23

Steps in RPC

1. Client procedure calls client stub in normal way.

2. Client stub builds message, calls local OS.

3. Client’s OS sends message to remote OS.

4. Remote OS gives message to server stub.

5. Server stub unpacks parameters, calls server.

6. Server does work, returns result to the stub.

7. Server stub packs it in message, calls local OS.

8. Server’s OS sends message to client’s OS.

9. Client’s OS gives message to client stub.

10. Stub unpacks result, returns to client.

E&IT Department, WUT DOS / Communication 1 – p. 24

Passing Value Parameters (1)

Implementation
of add

Client OS Server OS

Client machine Server machine

Client stub

Client process Server process
1. Client call to

procedure

2. Stub builds
message

5. Stub unpacks
message

6. Stub makes
local call to "add"

3. Message is sent
across the network

4. Server OS
hands message
to server stub

Server stub
k = add(i,j) k = add(i,j)

proc: "add"
int: val(i)
int: val(j)

proc: "add"
int: val(i)
int: val(j)

proc: "add"
int: val(i)
int: val(j)

Steps involved in doing remote computation through RPC.

parameter marshaling – packing parameters into a message.

E&IT Department, WUT DOS / Communication 1 – p. 25

Passing Value Parameters (2)

√

IBM mainframes: EBCDIC character code,
√

IBM personal computers: ASCII character code.

0 050 000 00

5 5 5
L LLL LLI IIJ JJ

0 0 01 1 12 2 23 3 3

4 4 4

5 50

6 6 67 7 7

(a) (b) (c)

a. Original message on the Pentium

b. The message as being received on the SPARC

c. The message after being inverted. The little numbers in boxes indicate
the address of each byte.

E&IT Department, WUT DOS / Communication 1 – p. 26

Asynchronous RPC (1)

Call local procedure

Call remote
procedure

Return
from call

Request Accept request

Wait for acceptance

Call local procedure
and return results

Call remote
procedure

Return
from call

Client Client

Request Reply

Server ServerTime Time

Wait for result

(a) (b)

a. The interconnection between client and server in a traditional RPC.

b. The interaction using asynchronous RPC.

E&IT Department, WUT DOS / Communication 1 – p. 27

Asynchronous RPC (2)

Call local procedure

Call remote
procedure

Return
from call

Client

Request
Accept
request

Server
Time

Wait for
acceptance

Interrupt client

Return
results Acknowledge

Call client with
one-way RPC

deferred synchronous RPC – asynchronous RPC with second call done by
the server,

one-way RPC – client does not wait for acceptance of the request , problem

with reliability.

E&IT Department, WUT DOS / Communication 1 – p. 28

Writing a Client and a Server

C compiler

Uuidgen

IDL compiler

C compiler C compiler

Linker Linker

C compiler

Server stub
object file

Server
object file

Runtime
library

Server
binary

Client
binary

Runtime
library

Client stub
object file

Client
object file

Client stubClient code Header Server stub

Interface
definition file

Server code

#include#include

Steps in writing a client and a server in DCE RPC. Let the developer
concentrate only on the client- and server-specific code. Leave the rest for
RPC generators and libraries.

E&IT Department, WUT DOS / Communication 1 – p. 29

Binding a Client to a Server

Client must locate server machine, and locate the server.

Endpoint
table

Server

DCE
daemon

Client
1. Register endpoint

2. Register service3. Look up server

4. Ask for endpoint

5. Do RPC

Directory
server

Server machineClient machine

Directory machine

Client-to-server binding in DCE – separate daemon for each server machine.

E&IT Department, WUT DOS / Communication 1 – p. 30

Remote Distributed Objects (1)

The basic idea of remote objects:

√

data and operations encapsulated in an object,
√

operations are implemented as methods, and are accessible through

interfaces,
√

object offers only its interface to clients,
√

object server is responsible for a collection of objects,
√

client stub (proxy) implements interface,
√

server skeleton handles (un)marshaling and object invocation.

E&IT Department, WUT DOS / Communication 1 – p. 31

Remote Distributed Objects (2)

Server machine

Object

Client machine

Proxy

Same
interface
as object

Interface

State

MethodClient
invokes
a method

Network

Skeleton
invokes
same method
at object

Marshalled invocation
is passed across network

Client OS Server OS

Server

Skeleton

Client

Common organization of a remote object with client-side proxy.

E&IT Department, WUT DOS / Communication 1 – p. 32

Remote Distributed Objects (3)

Compile-time objects
Language-level objects, from which proxy and skeletons are automatically

generated.

Runtime objects
Can be implemented in any language, but require use of an object

adapter that makes the implementation appear as an object.

√

Transient object lives only by virtue of a server: if the server exits, so

will the object.
√

Persistent object lives independently from a server: if a server exits,

the object’s state and code remain (passively) on disk.

E&IT Department, WUT DOS / Communication 1 – p. 33

Binding a Client to an Object (1)

Having an object reference allows a client to bind to an object:

√

reference denotes server, object, and communication protocol,
√

client loads associated stub code,
√

stub is instantiated and initialized for specific object.

Remote-object references enable passing references as parameters, what
was hardly possible with ordinary RPCs.

Two ways of binding:

√

Implicit: invoke methods directly on the referenced object.
√

Explicit: client must first explicitly bind to object before invoking it.

E&IT Department, WUT DOS / Communication 1 – p. 34

Binding a Client to an Object (2)

a. Example with implicit binding using only global references.

b. Example with explicit binding using global and local references.

E&IT Department, WUT DOS / Communication 1 – p. 35

RMI - Parameter Passing

Local object
O1

Copy of O1

Remote object
O2

Local
reference L1

New local
reference

Remote
reference R1

Remote
invocation with
L1 and R1 as
parameters

Copy of R1 to O2

Machine A Machine B

Machine C

Client code with
RMI to server at C
(proxy)

Server code
(method implementation)

Objects sometimes passed by reference, but sometimes by value.
√

a client running on machine A, a server on machine C,
√

the client calls the server with two references as parameters, O1 and

O2, to local and remote objects,
√

copying of an object as a possible side effect of invoking a method with

an object reference as a parameter (transparency versus efficiency).

E&IT Department, WUT DOS / Communication 1 – p. 36

	Communication (I)
	Necessary Agreements
	Protocols -- Introduction
	OSI Model
	Protocol -- Definition
	Types of Protocols
	Layered Protocols (1)
	Layered Protocols (2)
	Layered Protocols Encapsulation
	Lower-Level Protocols
	Data Link Layer
	Network Layer Protocols
	Transport Layer Protocols
	Lower-Level Protocols - summary
	Higher-Level layers
	Client-Server TCP
	Middleware Protocols (1)
	Middleware Protocols (2)
	High-level Middleware Communication Services
	Local Procedure Call
	Remote Procedure Call
	Principle of RPC
	Steps in RPC
	Passing Value Parameters (1)
	Passing Value Parameters (2)
	Asynchronous RPC (1)
	Asynchronous RPC (2)
	Writing a Client and a Server
	Binding a Client to a Server
	Remote Distributed Objects (1)
	Remote Distributed Objects (2)
	Remote Distributed Objects (3)
	Binding a Client to an Object (1)
	Binding a Client to an Object (2)
	RMI - Parameter Passing

