
Distributed Operating Systems

Communication (II)

Ewa Niewiadomska-Szynkiewicz

ens@ia.pw.edu.pl

Institute of Control and Computation Engineering

Warsaw University of Technology

E&IT Department, WUT DOS / Communication (II) – p. 1

Communication (II)

1. Message-oriented Communication

2. Stream-oriented Communication

E&IT Department, WUT DOS / Communication (II) – p. 2

Message-oriented Communication – Introduction

√

When it cannot be assumed that the receiving side is executing at the

time a request (in RPC or RMI) is issued, alternative communication
services are needed.

√

The inherent synchronous nature of RPCs and RMIs, by which a client

is blocked until its request has been processed, sometimes has to be
replaced.

√

Message-oriented communication is proposed.

The message-passing paradigm is widely used approach for programming
parallel machines, especially those with distributed memory.

E&IT Department, WUT DOS / Communication (II) – p. 3

Message-passing Paradigm – Attributes

Two key attributes characterizing the message-passing paradigm:

√

it assumes a partitioned address space,
√

it supports only explicit parallelization.

The logical view of a machine supporting the message-passing paradigm
consists of P processes, each with its own exclusive address space.

E&IT Department, WUT DOS / Communication (II) – p. 4

Communication System (1)

Assumption – communication system organized as follows:

√

applications are executed on hosts,
√

each host connected to one communication server,
√

buffers may be placed either on hosts or in the communication servers

of the underlying network,
√

example: an e-mail system.

Types of communication:
√

persistent vs transient communication,
√

synchronous vs asynchronous communication.

E&IT Department, WUT DOS / Communication (II) – p. 5

Communication System (2)

InternetworkLocal network

Sending host Receiving hostCommunication server Communication server

Application Application
Routing
program

Routing
program

Messaging interface

OS OSOS OS

Local buffer Local buffer

Buffer independent
of communicating
hosts

To other (remote)
communication
server

Incoming message

Organization of a communication system, hosts connected through a network

√

queued messages sent among processes,
√

sender not stopped in waiting for immediate reply,
√

fault tolerance often ensured by middleware.

E&IT Department, WUT DOS / Communication (II) – p. 6

Persistence vs. Transient Communication

Persistent communication
A message is stored at a communication server as long as it takes to

deliver it at the receiver.

Transient communication
A message is discarded by a communication server as soon as it cannot

be delivered at the next server or at the receiver.

E&IT Department, WUT DOS / Communication (II) – p. 7

Persistence Communication – Example

Post
office

Post
office

Post
office

Post
officePony and rider

Mail stored and sorted, to
be sent out depending on destination
and when pony and rider available

Persistent communication of letters back in the days of the Pony Express.

E&IT Department, WUT DOS / Communication (II) – p. 8

Synchronous vs. Asynchronous Communication

Asynchronous communication

The sender continues immediately after it has submitted its message for
transmission.

Synchronous communication
The sender is blocked until its message is stored in a local buffer at the

receiving host or actually delivered to the receiver.

E&IT Department, WUT DOS / Communication (II) – p. 9

Synchronous Communication – Example

Client/server computing generally based on a model of synchronous

communication:

√

client and server to be active at the time of communication,
√

client issues request and blocks until reply received,
√

server essentially waits only for incoming requests and subsequently

processes them.

Drawbacks of synchronous communication:
√

client cannot do any other work while waiting for reply,
√

failures to be dealt with immediately (the client is waiting),
√

in many cases the model simply is not appropriate (mail, news).

E&IT Department, WUT DOS / Communication (II) – p. 10

Different Forms of Communication

B is not
running

B is not
running

A A

A A

A A

B B

B B

B B

Time Time

Time Time

Time Time

A sends message
and continues

A sends message
and waits until acceptedA stopped

running

A stopped
running

B starts and
receives
message

B starts and
receives
message

A sends message
and continues

Message can be
sent only if B is
running

B receives
message

Send request and wait
until received

Send request and wait until
accepted

Send request
and wait for reply

Process
request

Process
request

Process
request

Running, but doing
something else

Running, but doing
something else

Request
is received

Request
is received

Request
is received

ACK

Accepted
Accepted

(a) (b)

(c) (d)

(f)(e)

Message is stored
at B's location for
later delivery

Accepted

Running, but doing
something else

Different forms of communication:

a. persistent asynchronous,

b. persistent synchronous,

c. transient asynchronous,

d. receipt-based transient
synchronous,

e. delivery-based transient
synchronous,

f. response-based transient
synchronous,

E&IT Department, WUT DOS / Communication (II) – p. 11

Message-Oriented Transient Communication

√

Berkeley Sockets – socket interface introduced in Berkeley UNIX,
√

another transport layer interface: XTI, X/Open Transport Interface,

formerly called the Transport Layer Interface (TLI), developed by AT&T
√

Message-Passing Interface (MPI) – standard for message passing

Sockets and XTI are very similar in their model of network programming, but
differ in their set of primitives.

E&IT Department, WUT DOS / Communication (II) – p. 12

Berkeley Sockets

Socket
Communication endpoint to which an application write data that are to be

sent over the underlying network and from which incoming data can be read.

A socket forms an abstraction over the actual communication endpoint that is
used by the local operating system for a specific transport layer.

E&IT Department, WUT DOS / Communication (II) – p. 13

Berkeley Sockets – Communication Types (1)

Connection-Oriented Communication

√

When devices communicate, they perform handshaking to set up an

end-to-end connection.
√

The handshaking process may be as simple as synchronization such as

in the transport layer protocol TCP, or as complex as negotiating
communications parameters as with a modem.

Connection-Oriented systems can only work in bi-directional communications
environments. To negotiate a connection, both sides must be able to
communicate with each other.

E&IT Department, WUT DOS / Communication (II) – p. 14

Berkeley Sockets – Communication Types (2)

Connectionless Communication

√

No effort is made to set up a dedicated end-to-end connection.
√

Connectionless communication is usually achieved by transmitting

information in one direction (source to destination) without checking to
see if the destination is still there, or if it is prepared to receive the
information.

Connectionless communication works fine when there is little interference,
and plenty of speed available.
In environments where there is difficulty transmitting to the destination,
information may have to be re-transmitted several times before the complete
message is received.

E&IT Department, WUT DOS / Communication (II) – p. 15

Socket Primitives

When calling the socket primitive, the caller creates a new communication
endpoint for a specific transport protocol.

Communication point creation – the local operating system reserves

resources to accommodate sending and receiving messages for the specific
protocol.

Operations:
√

New communication endpoint (socket) creation
√

A local address association with the new socket
√

Allocation of resources in connection-oriented communication
√

Connection establishment
√

Sending and receiving data

The type of communication has to be decided when the socket is created (the
same communication type for both client and server has to be established)

E&IT Department, WUT DOS / Communication (II) – p. 16

Socket Primitives for TCP/IP (1)

Create a new communication endpoint

int socket(int addr, int socktype, int protocol)

Attach a local address pointed by name to a socket s

int bind(SOCKET s, const struct sockaddr *name, int namelen)

Sending and receiving data – functions: int sendto and int recvfrom

E&IT Department, WUT DOS / Communication (II) – p. 17

Socket Primitives for TCP/IP (2)

Connection-oriented communication

Announce willingness to accept backlog connections

int listen(SOCKET s, int backlog)

Actively attempt to establish a connection (client)

int connect(SOCKET s, const struct sockaddr *addr, int

addrlen)

Block caller until a connection request arrives (server)

int accept(SOCKET s, const struct sockaddr *addr, int addrlen)

Send some data over the connection

int send(SOCKET s, const char *buf, int len, int flags)

Receive some data over the connection

int recv(SOCKET s, const char *buf, int len, int flags)
E&IT Department, WUT DOS / Communication (II) – p. 18

Sockets – Connection-oriented Communication

connect

socket

socket

bind listen read

read

write

write

accept close

close

Server

Client

Synchronization point Communication

The general pattern followed by a client and server for connection-oriented
communication using sockets.

E&IT Department, WUT DOS / Communication (II) – p. 19

Berkeley Sockets – Discussion

Good points:
√

simple and effective data transmission in parallel and distributed
systems,

√

portable applications can be developed.

Sockets insufficient because:
√

the wrong level of abstraction supporting only send and receive

primitives,
√

binary format of transmitted data (conversion is necessary),
√

designed to communicate using general-purpose protocol stacks such

as TCP/IP, not suitable in high-speed interconnection networks (with
different forms of buffering and synchronization).

E&IT Department, WUT DOS / Communication (II) – p. 20

Message-Passing Interface (MPI) – Introduction (1)

MPI (Message-Passing Interface)
A widely used standard for writing message-passing programs developed

by the MPI working group.
The MPI Forum was constituted since 1993
(http://www.mpi-forum.org/).

Group of message-oriented primitives (about 250 subroutines and functions)
that would allow developers to easily write highly efficient applications in C,
C++ and Fortran.

The interface is suitable for use by fully general MIMD (Multiple Instruction,
Multiple Data) programs, as well as those written in style of SPMD (Single
Program, Multiple Data).

In SPMD tasks are split up and run simultaneously on multiple processors
with different input in order to obtain results faster.

E&IT Department, WUT DOS / Communication (II) – p. 21

https://sa.nask.waw.pl/,DanaInfo=www.mpi-forum.org+

Message-Passing Interface (MPI) – Introduction (2)

MPI assumptions:

√

communication within a known group of processes,
√

each group with assigned ID,
√

each process within a group also with assigned ID,
√

all serious failures (process crashes, network partitions) assumed as

fatal and without any recovery,
√

a (groupID, processID) pair used to identify source and destination of

the message,
√

only receipt-based transient synchronous communication not

supported, other supported.
√

group communication is provided.

E&IT Department, WUT DOS / Communication (II) – p. 22

MPI concepts

The concepts that MPI provides are as follows:

√

Contexts of communication;
√

Communicators;
√

Groups of processes;
√

Virtual topologies;
√

Attribute caching.

E&IT Department, WUT DOS / Communication (II) – p. 23

Communicator

Communicator
Communicator specifies the communication context for the communication

operation. Each communication context provides a separate communication

universe.

Messages are always received within the context they were sent, and
messages sent in differen contexts do not interfere.

Communicator – identified by the handle with type MPI_Comm.
MPI_COMM_WORLD – a predefined communicator in MPI (allows
communication with all processes accessible after MPI initialization).

E&IT Department, WUT DOS / Communication (II) – p. 24

Selected MPI Primitives

Starting MPI library

int MPI_Init(int *argc, **argv[])

Terminating MPI library

int MPI_Finalize(void)

The number of processes determination

int MPI_Comm_size(MPI_Comm comm, int *size)

The rank determination

int MPI_Comm_rank(MPI_Comm comm, int *rank)

The handle to the group

int MPI_Comm_group(MPI_Comm comm, MPI_Group *group)

E&IT Department, WUT DOS / Communication (II) – p. 25

Communication in MPI - Introduction (1)

Sending and receiving messages (point-to-point communication)

√

synchronous communication – tasks synchronize to perform

interactions,
√

asynchronous communication – all concurrent tasks execute

asynchronously (non-deterministic behavior due to a race conditions).

Three phases of the message transfer:
√

data is pulled out of the send buffer and a message is assembled,
√

a message is transferred to receiver,
√

data is pulled from the incoming message and disassembled into the

receive buffer.

E&IT Department, WUT DOS / Communication (II) – p. 26

Communication in MPI - Introduction (2)

Types of send/receive operations provided in MPI library:
√

synchronous and asynchronous

⋆ synchronous - send operation returns only after the receiver has
received the data.

⋆ asynchronous - send operation returns just after sending the
message.

√

blocking and non-blocking:

⋆ blocking - send/receive operation blocks until it can guarantee that

the semantics won’t be violated on return irrespective of what
happens in the program.

⋆ non-blocking - send/receive operation returns before it is
semantically safe to do so.

E&IT Department, WUT DOS / Communication (II) – p. 27

Communication in MPI – Functions (1)

In the message-passing paradigm the communication is initiated by the
sender.

Blocking communication:

Asynchronous send (standard)

1 int MPI_Send (void *sendbuf, int count,

2 MPI_Datatype datatype,

3 int dest, int tag, MPI_Comm comm)

Buffered send – function MPI_Bsend (required buffer allocation - function
MPI_Buffer_attach.

Synchronous send – function MPI_Ssend

E&IT Department, WUT DOS / Communication (II) – p. 28

Communication in MPI – Functions (2)

Blocking receive (standard)

1 int MPI_Recv(void *recvbuf, int count,

2 MPI_Datatype datatype,

3 int source, int tag,

4 MPI_Comm comm, MPI_Status *status)

Non-blocking communication:
√

asynchronous send: MPI_Isend
√

buffered send: MPI_Ibsend
√

synchronous send: MPI_Issend
√

non-blocking receive: MPI_Irecv

Blocking and non-blocking testing: MPI_Probe and MPI_Iprobe.

E&IT Department, WUT DOS / Communication (II) – p. 29

Communication in MPI – Recommendations

√

Asynchronous blocking send MPI_Send; blocking buffered send

MPI_Bsend for large amount of transmitted data, or when more control
is needed.

√

Asynchronous blocking receive MPI_Recv, preceded by non-blocking

testing MPI_Iprobe.
√

Synchronization – barrier function MPI_Barrier.

E&IT Department, WUT DOS / Communication (II) – p. 30

Communication – Alternative Proposition

Alternative proposition – combined blocking send and receive.

1 int MPI_Sendrecv(void *sendbuf, int sendcount,

2 MPI_Datatype sendtype, int dest,

3 int sendtag,

4 void *recvbuf, int recvcount,

5 MPI_Datatype recvtype, int source,

6 int recvtag,

7 MPI_Comm comm, MPI_Status *status)

E&IT Department, WUT DOS / Communication (II) – p. 31

Collective Communication in MPI

All processes in the group call the communication routine, with

matching arguments

√

Synchronization – barrier function: MPI_Barrier
√

Broadcast from one member to all members of a group: MPI_Bcast
√

Scatter data from one member to all members of a group: MPI_Scatter,

MPI_Scatterv
√

Gather data from all members of a group to one member: MPI_Gather,

MPI_Gatherv
√

”All to all” send: MPI_Alltoall
√

Global reduction operations: MPI_Reduce

E&IT Department, WUT DOS / Communication (II) – p. 32

Stream-Oriented Communication – Introduction

Data stream – sequence of data units (can be applied to discrete and
continuous media).

Types of streams:

a. simple – consists of only a single sequence of data,

b. complex – consists of several related simple streams.

Stream-Oriented Communication – exchange time-dependent information
(such as: audio and video stream). Forms of communication in which timing
plays a crucial role.

E&IT Department, WUT DOS / Communication (II) – p. 33

Stream-Oriented Communication – Example

Example:

√

an audio stream built up as a sequence of 16-bit samples each

representing the amplitude of the sound wave as it is done through
PCM (Pulse Code Modulation),

√

audio stream represents CD quality, i.e. 44100Hz,
√

samples to be played at intervals 1/44100sec.

To reproduce the original sound, it is essential that the samples in the audio
stream are played out in the order they appear in the stream and at intervals
of exactly 1/44100sec.

E&IT Department, WUT DOS / Communication (II) – p. 34

Continuous Media vs. Discrete Media

Medium
A medium refers to the means by which the information is conveyed and

represented (sound, image, text,...).

Continuous (representation) media

The temporal relationships between different data items are fundamental
to correctly interpreting the data (sound, series of images,...).

Discrete (representation) media
The temporal relationships between different data items are not

fundamental to correctly interpreting the data (text, files with code,...).

Which facilities a distributed system should offer to exchange time-dependent
information such as audio and video streams? Support for:

√

exchange of time-dependent data continuous media,
√

multimedia communication (continuous & discrete media).

E&IT Department, WUT DOS / Communication (II) – p. 35

Transmission Modes

Asynchronous transmission mode

Data items in a stream are transmitted one after the other, but there are no
further timing constraints on when transmission of items should take place.

Synchronous transmission mode
Maximum end-to-end delay defined for each unit in a data stream.

Isochronous transmission mode
It is necessary that data units are transferred on time. Data transfer is

subject to bounded (delay) jitter.

E&IT Department, WUT DOS / Communication (II) – p. 36

Stream Communication – System Architecture

Camera
Display

Network

Stream

Network

Stream

Sending process

(a)

(b)

Program

Receiving process

OS OS

OSOS

a. Setting up a stream between two processes across a network,

b. Setting up a stream directly between two devices.

E&IT Department, WUT DOS / Communication (II) – p. 37

Stream Communication – Multicasting

Source

Intermediate
node, possibly
with filters

SinkStream

Lower bandwidth

An example of multicasting a stream to several receivers.

√

problem with receivers having different requirements with respect to the

quality of the stream,
√

filters to adjust the quality of an incoming stream, differently for

outgoing streams.

E&IT Department, WUT DOS / Communication (II) – p. 38

QoS – Token Bucket Algorithm

One token is added
to the bucket every T∆

Application

Regular stream

Irregular stream
of data units

The principle of a token bucket algorithm

√

tokens generated at a constant rate; each token represents a fixed

number of k bytes of data,
√

tokens buffered in a bucket which has limited capacity (when the bucket

is full, tokens are dropped).

E&IT Department, WUT DOS / Communication (II) – p. 39

QoS – Specification

QoS (Quality of Service)

A flow specification.

Time-dependent requirements among other Quality of Service (QoS)

requirements.

E&IT Department, WUT DOS / Communication (II) – p. 40

Setting Up a Stream (RSVP)

RSVP process

Admission
control

Policy
control

Data link layer
data stream

Application
data stream

Reservation requests
from other RSVP hosts

RSVP-enabled host

Application

RSVP
program

Local OS

Setup information to
other RSVP hosts

Local network

Sender process

Data link layer

Internetwork

The basic organization of RSVP (Resource reSerVation Protocol),
transport-level protocol for resource reservation in a distributed system.

E&IT Department, WUT DOS / Communication (II) – p. 41

Streams Synchronization (1)

Two issues:
√

the basic mechanisms for synchronizing two streams,
√

the distribution of those mechanisms in a network.

Network

Incoming stream

Application

Receiver's machine

Procedure that reads
two audio data units for
each video data unit

OS

E&IT Department, WUT DOS / Communication (II) – p. 42

Streams Synchronization (2)

Typical approach for many multimedia middleware systems.

Multimedia control
is part of middleware

Application tells
middleware what
to do with incoming
streams

Network

Incoming stream

Application

Receiver's machine

Middleware layer

OS

The principle of synchronization as supported by high-level interfaces.

Multiplex of all substreams into a single stream and demultiplexing at the
receiver. Synchronization is handled at multiplexing/demultiplexing point
(MPEG).

E&IT Department, WUT DOS / Communication (II) – p. 43

	Communication (II)
	Message-oriented Communication -- Introduction
	Message-passing Paradigm -- Attributes
	Communication System (1)
	Communication System (2)
	Persistence vs. Transient Communication
	Persistence Communication -- Example
	Synchronous vs. Asynchronous Communication
	Synchronous Communication -- Example
	Different Forms of Communication
	Message-Oriented Transient Communication
	Berkeley Sockets
	Berkeley Sockets -- Communication Types (1)
	Berkeley Sockets -- Communication Types (2)
	Socket Primitives
	Socket Primitives for TCP/IP (1)
	Socket Primitives for TCP/IP (2)
	Sockets -- Connection-oriented Communication
	Berkeley Sockets -- Discussion
	Message-Passing Interface (MPI)
-- Introduction (1)
	Message-Passing Interface (MPI)
-- Introduction (2)
	MPI concepts
	Communicator
	Selected MPI Primitives
	Communication in MPI - Introduction (1)
	Communication in MPI - Introduction (2)
	Communication in MPI -- Functions (1)
	Communication in MPI -- Functions (2)
	Communication in MPI -- Recommendations
	Communication -- Alternative Proposition
	Collective Communication in MPI
	Stream-Oriented Communication -- Introduction
	Stream-Oriented Communication -- Example
	Continuous Media vs. Discrete Media
	Transmission Modes
	Stream Communication -- System Architecture
	Stream Communication -- Multicasting
	QoS -- Token Bucket Algorithm
	QoS -- Specification
	Setting Up a Stream (RSVP)
	Streams Synchronization (1)
	Streams Synchronization (2)

