
Distributed Operating Systems

Synchronization – general purpose algorithms

dr inż. Adam Kozakiewicz

akozakie@ia.pw.edu.pl

Institute of Control and Information Engineering

Warsaw University of Technology

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 1/54

Synchronization

1. Clock synchronization

2. Logical clocks

3. Global state (distributed snapshot)

4. Election algorithms

5. Mutual exclusion

Synchronization

Setting the time order of a set of events caused by concurrent processes.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 2/54

Clock Synchronization

Computer on
which compiler
runs

Computer on
which editor
runs

Time according
to local clock

Time according
to local clock

output.o created

output.c created

2144 2145 2146 2147

2142 2143 2144 2145

Problem: clocks are not perfect. When each machine has its own clock, an
event that occured after another event may still get an earlier timestamp.

A simple example: calling make in a system, where compilation is actually
done on a separate machine (compile farm).

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 3/54

Timers – Real Time Clocks

√
timers work by counting oscillations in a crystal,

√
whenever the counter reaches 0, a timer interrupt is generated,

incrementing the holding register,
√

frequency of the crystals is not a constant – different crystals can have

different frequencies,
√

the frequency of a crystal depends on external conditions (temperature,

etc.),
√

the differences cause an increasing clock skew.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 4/54

Time Definitions

Solar time defined by observations of the Sun

Solar day the time between transits of the Sun

Solar second 1/86400 of the solar day
√

Earth’s orbit is elliptical – this affects observations
√

Earth’s rotation speed changes in time

? tidal forces from the moon slow it down in long term
? in short term the changes are not predictable (movement of

tectonic plates, gravity of other celestial bodies, etc.)
√

Mean solar second, mean solar time – based on a mathematical

construct eliminating seasonal changes of apparent solar time

sidereal time defined by observations of stars (including precession)
√

Not influenced by the elliptic orbit of the Earth
√

Only used in astronomy

Atomic time defined by atomic clocks (counting seconds)

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 5/54

Time Definitions – Atomic Time

√
Atomic clocks – based on counting the natural oscillation of caesium
atoms

√
Theoretically almost perfect, according to the definition of a second in

the SI system:

A second is the duration of 9,192,631,770 periods of the radiation
corresponding to the transition between the two hyperfine levels of
the ground state of the caesium-133 atom

√
Polish standard is the same as SI (rozporządzenie Rady Ministrów z

dn. 30.11.2006 w sprawie legalnych jednostek miar, Dz.U. 2006 nr 225
poz. 1638, par. 3 ust. 3)

√
In reality cesium atoms are in compounds, not at 0K, not in ground

state (Earth’s magnetic field!) and the measurement may not be perfect,
relativistic time dilation further complicates matters

√
Not perfect, but extremely accurate – 10−15, about 0.1ns in a day

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 6/54

Time Standards

UT0 mean solar time at meridian 0 (Greenwich)

UT1 Universal Time, UT0 with a correction for the polar precession

UT1R, UT2, UT2R further smoothing of UT1, correcting for seasonal
variations (UT2, UT2R) and tidal effects (UT1R, UT2R), rarely used

GMT is not a standard anymore, broken up into UT1 (direct successor) and
UTC, the abbreviation now only identifies the Greenwich time zone, any
other use is erronous

TAI atomic time, the average of the local atomic times of about 50 atomic
clocks worldwide

UTC coordinated universal time, the most important in practice

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 7/54

UTC Standard

√
The acronym UTC is not expandable – it is a compromise between CUT,

Coordinated Universal Time and TUC, Temps Universel Coordonné
√

TAI, synchronized with UT1
√

differs from TAI by an integer number of seconds (currently 33)
√

whenever the difference between UTC and UT1 reaches 0.9s, a leap

second is introduced on one of two possible moments in a year:

? June 30, 23:59:60

? December 31, 23:59:60

? a negative leap second is also possible (never occured so far), on
one of the two days 23:59:58 will be directly followed by 00:00:00

? if more than two leap seconds are required in a year, they can be
scheduled at the end of March 31 or September 30 (never
happened so far)

√
can be obtained using radio or satellite (a short pulse at the start of

each second), of course transmission lowers accuracy

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 8/54

Clock Synchronization

Assume we can synchronize directly with UTC. How often should we do it?

√
denote the time according to the local clock by C(t) (t – UTC time)

√
for a perfectly accurate clock Cp(t) = t, so dC/dt = 1; real clocks can be

fast or slow
√

we can estimate an upper bound ρ on the clock skew in a given

distributed system (1 − ρ ≤ dC/dt ≤ 1 + ρ)
√

synchronizing with UTC every δ/(2ρ) seconds, guarantees that:

? the difference between the local time and UTC will not exceed δ/2
seconds, or

? the difference between the local times on any two clocks in the
system will not exceed δ seconds

the latter goal can be achieved without access to UTC – any local time
(or average of many) will do

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 9/54

Clock Synchronization – Two Approaches

Principle I Every machine asks a time server (preferably equipped with UTC
receiver) for time at least every δ/(2ρ) seconds.
√

Round trip delays must be well estimated!
√

Very accurate with a UTC receiver; otherwise the global time

depends entirely on the time server’s clock.

Principle II The local times of all machines are averaged and all machines
correct their time towards the average.
√

A time server is optional.
√

All clocks in the system are synchronized (probably).
√

Using many clocks should increase the accuracy – important when

UTC is not available.

√
Time should never be set back! Only large corrections are introduced

like that, normally smooth adjustments are used (slowing down or
accelerating the local clock).

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 10/54

Clock Synchronization Algorithms

Clock synchronization algorithms:
√

Cristian’s algorithm
√

Berkeley algorithm
√

Averaging algorithms

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 11/54

Cristian’s Algorithm

Client

Request

Time
Time server

CUTC

T0 T1

I, Interrupt handling time

Both T and T are measured with the same clock0 1

Get the time from the tiime server (several times)

√
received time corresponds to (T1 − T0)/2 local time (approximately)

√
messages with T1 − T0 above threshold are discarded as victims of

network congestion
√

the fastest response (lowest T1 − T0) is the most accurate and is used

to correct local time

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 12/54

Berkeley Algorithm

Time daemon

3:00 3:00 3:053:00 0 +5

3:00 -10 +15

3:00 +25 -20

3:25 3:25 3:052:50 2:50 3:05

Network

(a) (b) (c)

1. the time server asks all machines for current local time or gives its own
local time and asks for the difference

2. the time server collects the information and computes the average time

3. the time server sends corrections to all machines

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 13/54

Averaging algorithms

√
fully distributed (previous methods were highly centralized)

? fixed-length resynchronization intervals:
T0 + (i + 1)R, where R is a system parameter

? machines broadcast their own local time, collect information sent
by the others, compute the average and correct their clocks

? variant – add correction for propagation time for each message
√

Internet uses the Network Time Protocol (NTP), accuracy in the range

of 1-50ms.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 14/54

Logical clocks

√
UTC is not always essential,

√
the important thing for a distributed system is usually internal

consistency, not being close to the real time,
√

time (in the calendar/wall clock sense) is very often completely

unnecessary, the point is to agree on the order of events in the system
– this is the task for logical clocks,

√
Lamport’s algorithm is used to synchronize logical clocks,

√
vector timestamps are an extension of the Lamport’s algorithm

ensuring causality of the ordering.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 15/54

The Happened-Before Relation

The happened-before relation in a set of events in a distributed system is
the smallest relation satisfying:

√
if a and b are two events in the same process and a comes before b,

then a→ b.
√

if a is the sending of a message and b is the receipt of that message,
a→ b.

√
the relation is transitive, that is if a→ b and b→ c, then a→ c.

This relation is a partial ordering of events in a system with concurrently
operating processes.

Concurrent events
This relation says nothing about which of two unrelated events happened

first.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 16/54

Logical Clocks (1)

How can we maintain a global system of event ordering consistent with the
happened-before relation?

Solution: attach a time-stamp C(e) to each event e, so that the following
properties hold:

P1 If a and b are two events in the same process and a→ b, then C(a) < C(b).

P2 If a is the sending of a message m and b is the receipt of message m,
then C(a) < C(b).

A perfectly accurate global clock generates time-stamps constistent with
these properties, but we know it’s impossible to keep perfect accuracy. How
to create good time-stamps without it?

Solution: maintain a consistent set of logical clocks, one per process, and
instead of trying to keep them in sync, focus on enforcing the
happened-before relation.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 17/54

Logical Clocks (2)

Every process Pi maintains a local counter Ci and adjusts it according to the
following rules:

1. For every successive event within Pi increment the counter by 1.
(Definition of event?)

2. Add a time-stamp Tm = Ci to every message m sent by process Pi.
Note: sending of a message is an event, so time-stamp should be
attached after incrementation!

3. Whenever a message m with time-stamp Tm is received by process P j,

P j increments its local counter C j as follows:

C j := max{C j + 1, Tm + 1}.
√

property P1 is satisfied by rule 1,
√

property P2 is satisfied by rules 2 and 3.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 18/54

Logical Clocks (3)

0

6

12

18

24

30

36

42

48

54

60

0

6

12

18

24

30

36

42

48

70

76

0

8

16

24

32

40

48

56

64

72

80

0

8

16

24

32

40

48

61

69

77

85

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

A A

B B

C C

D D

(a) (b)

Lamport’s algorithm example

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 19/54

Total Ordering of Events Using Lamport’s Time

Lamport’s algorithm allows two events to happen at the same time (two
different messages sent by different processes can have the same
time-stamp). Total ordering is possible by attaching the sender’s process
number to the time-stamp.

If in process Pi the time-stamp of event e is Ci(e).i

Then Ci(a).i is before C j(b). j if and only if:

√
Ci(a) < C j(a), or

√
Ci(a) = C j(b) and i < j.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 20/54

Example: Totally-Ordered Multicasting

Update 1 Update 2

Update 1 is
performed before

update 2

Update 2 is
performed before

update 1

Replicated database

√
Total order is implemented using (extended) Lamport’s algorithm.

√
Every message is timestamped with the sender’s local logical time.

√
Received message is put into a local queue, ordered by time-stamps,

receiver multicasts an acknowledgement to others.
√

A message leaves the queue for processing only if it’s at the head of

the queue and has been acknowledged by all processes.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 21/54

Vector Timestamps (1)

√
Lamport timestamps do not guarantee that if C(a) < C(b), then a indeed

happened before b. This requires vector timestamps.

? every process Pi maintains an array of counters Vi[1 . . . n], where
Vi[j] denotes the number of events in process P j that the process

Pi already knows about.

? whenever Pi sends a message m, it increments its own counter,
Vi[i], by 1 and sends the entire array Vi with the message m as the
vector timestamp vt(m).

√
timestamp vt of m tells the receiver how many events in other processes

have preceded m, in the sense that the sender knew about them and
they may have causally influenced the message m – therefore the
receiver needs to know about those events to have a proper context to
understand m.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 22/54

Vector Timestamps (2)

√
when a process P j receives a message m from Pi with a timestamp

vt(m), it:

? updates all counters V j[k] to max{V j[k], vt(m)[k]},
? increments its own counter V j[j] by 1.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 23/54

Vector Timestamps (3)

√
Causal delivery of broadcasted messages can be assured with vector

timestamps only incremented for the events of sending messages and
with delivery queues. Message m is delivered to process P j only if:

? vt(m)[i] = V j[i] + 1 and

? vt(m)[k] ≤ V j[k] for all k , i,

that is when P j already received all earlier messages from Pi, and all

messages from other processes that process Pi received before sending
m. P j may already have received some new messages from other

processes – that is not important, as it doesn’t affect the interpretation
of m.

Example:
V3 = [0, 2, 2], vt(m) = [1, 3, 0] – what does P3 know? If it receives m from P1,
what will it do?

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 24/54

Causal Delivery of Messages Example – Setting

Assumptions:
√

multicast – all messages are sent to everyone except the sender,
√

messages from one process are received in the same order by all
processes,

√
reliable sending mechanism,

√
order of messages from different senders in not enforced.

Sender:

1. Multicasts the message.

Receiver:

1. Receives the message (communication layer).

2. Processes the message (actual delivery to the process from the
communication layer).

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 25/54

Causal Delivery of Messages Example – Rules

Let:

vtm – vector timestamp of message m,

VP – current vector of process P.

Rules
Every message m sent by process P includes a vector timestamp vt(m)
defined as follows:

1. vtm[P] = VP[P] + 1,

2. vtm[X] = VP[X] for every X , P.

Message m received from process P is queued. It is delivered to process Q
when:

1. vtm[P] = VQ[P] + 1

2. vtm[X] ≤ VQ[X] for every X , P.

After message m is delivered, Q updates its vector as follows:

1. VQ[X] = max{VQ[X], vtm[X]}
Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 26/54

Causal Delivery of Messages Example – Problem

Three processes, A, B i C, with initial vectors VA = VB = VC = (0, 0, 0).

Scenario:

1. A multicasts m1,

2. B multicasts m2 in response to m1,

3. C is an observer.

Goal:
Message m2 should be delivered to C after m1 is delivered. If m2 arrives at C
first, it must be queued until m1 arrives.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 27/54

Causal Delivery of Messages Example (1)

A sends m1(0 + 1, 0, 0) = m1(1, 0, 0) and increments VA[A], so VA = (1, 0, 0),
B receives m1(1, 0, 0) from A,

VB = (0, 0, 0), vtm1 = (1, 0, 0),
m1 will be immediatly delivered, because:

vtm1[A] = VB[A] + 1,
vtm1[X] <= VB[X] for every X , A.

after delivery of m1 the new value of VB is VB = (1, 0, 0).

B replies m2(1, 0 + 1, 0) = m2(1, 1, 0) and increments VB[B], so VB = (1, 1, 0),
A receives m2(1, 1, 0) from B,

VA = (1, 0, 0), vtm2 = (1, 1, 0),
m2 will be delivered immediately, because:

vtm2[B] = VA[B] + 1,
vtm2[X] <= VA[X] for every X , B.

after delivery of m2 the new value of VA is VA = (1, 1, 0).

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 28/54

Causal Delivery of Messages Example (2)

C receives m2(1, 1, 0) from B,

VC = (0, 0, 0), vtm2 = (1, 1, 0),
delivery of m2 will be postponed, because:

vtm2[A] > VC[A] and A , B.

Comment:
The vector timestamp suggests, that at the moment of sending m2 B knew
about one message from A. C hasn’t received anything from A so far.

The missing message from A may be important for correct interpretation of
m2 (indeed it is so, m2 is a reply and may need context – but C cannot be
sure). Therefore m2 cannot be delivered at the moment – C must wait for m1.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 29/54

Causal Delivery of Messages Example (3)

C receives m1(1, 0, 0) from A,

VC = (0, 0, 0), vtm1 = (1, 0, 0),
m1 will be delivered immediately, because:

vtm1[A] = VC[A] + 1,
vtm1[X] <= VC[X] for every X , A.

after delivery of m1 the new value of VC is VC = (1, 0, 0).
Since the input queue of C is not empty, we check its state;
m2 can be delivered now, because:

VC = (1, 0, 0), vtm2 = (1, 1, 0),
vtm2[C] = VC[C] + 1,
vtm2[X] ≤ VC[X] for every X , C.

after delivery of m2 the new value of VC is VC = (1, 1, 0).

After two multicast messages A→ BC and B→ AC, the time vectors in all
processes are: VA = VB = VC = (1, 1, 0)

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 30/54

Global System State (1)

Collecting a global system state (distributed snapshot) is important in most
distributed systems – in case of a malfunction it allows us to restart the
system from a given moment, instead of starting it from the beginning . The
distributed snapshot consist of a complete set of local snapshots of individual
processes and a complete set of messages currently in transit.

P1 P1

P2 P2

P3 P3

Consistent cut Inconsistent cut

m3 m3

m2
m2

Time Time

Sender of m2 cannot
be identified with this cut

(a) (b)

m1 m1

A distributed snapshot must reflect a consistent state. In figure (b) the
snapshot of the third process is done after receiving message m2, which
hasn’t been sent yet when the sender made its snapshot – restarting from the
snapshot will probably result in duplicating that message.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 31/54

Global System State (2)

√
the system is a collection of distributed processes connected through

unidirectional point-to-point communication channels

? the less channels we have, the better, but even bidirectional
channels fit into this model as pairs of channels

√
a distributed snapshot can be initiated by any process P

? if P is not predefined, the markers used in the algorithm should
contain its identifier, to avoid errors caused by collection being
started concurrently by two processes

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 32/54

Global System State (3)

1. P starts by recording its own local state,

2. P sends a marker through each of its outgoing channels,

3. when Q receives a marker from channel C, its action depends on
whether it has already recorded its local state:
√

not yet recorded: Q records its local state and sends the marker

through all outgoing channels,
√

already recorded: a marker on channel C means that the sender

just recorded its state, so Q records all messages received from
channel C since its own local state was recorded,

4. the operation ends for a process (including P) when it has received
markers from all its incoming channels.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 33/54

Global System State – Example

Distributed snapshot, including channel state:

S

state:

M

a1

d1

a2

b1

b2

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 34/54

Global System State – Example

Distributed snapshot, including channel state:

S

state:

M

a2

c1

a3

b3
b2

d1

1. Process S recieves its first marker – stops processing to make a local
snapshot.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 35/54

Global System State – Example

Distributed snapshot, including channel state:

S

state:

Ma2

a3

b3

b2 M

S

c1

1. Process S made a local snapshot, now it sends markers through all
outgoing channels and resumes processing.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 36/54

Global System State – Example

Distributed snapshot, including channel state:

S

state:

M

a3

b3

b4
M

S, b2

c1

d2

1. Process S recieves its first marker and makes a local snapshot.

2. S records all messages from incoming channels on which no marker
has been received (b). Messages following a marker (channel a) are
ignored.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 37/54

Global System State – Example

Distributed snapshot, including channel state:

S

state:

a4

b4

M

S, b2, b3

b5

c2

1. Process S recieves its first marker and makes a local snapshot.

2. S records all messages from incoming channels on which no marker
has been received (b). Messages following a marker (channel a) are
ignored.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 38/54

Global System State – Example

Distributed snapshot, including channel state:

S

state:

a4

M

S, b2, b3,
b4

b5

c2

1. Process S recieves its first marker and makes a local snapshot.

2. S records all messages from incoming channels on which no marker has been

received (b). Messages following a marker (channel a) are ignored.

3. S receives a marker from the last incoming channel and saves all
recorded messages with the local state - this is S ’s part of the global
snapshot.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 39/54

Global System State – Example

Distributed snapshot, including channel state:

S

state:

a4

S, b2, b3,
b4

b5
d3

1. Process S recieves its first marker and makes a local snapshot.

2. S records all messages from incoming channels on which no marker has been

received (b). Messages following a marker (channel a) are ignored.

3. S receives a marker from the last incoming channel and saves all recorded

messages with the local state - this is S ’s part of the global snapshot.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 40/54

Election algorithms

Some distributed algorithms require a coordinator. How can we select one?

√
in a centralized system the coordinator is selected manually (file

servers, etc.) and is a single point of failure.
√

just because there is a coordinator, doesn’t mean that the system is

centralized – if the coordinator can be selected dynamically.
√

a fully distributed algorithm, without any coordinator, is not always the

best choice – it tends to complicate the system and slow it down.

Some election algorithms:
√

the bully algorithm,
√

ring algorithms.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 41/54

The Bully Election Algorithm (1)

Every process has an associated priority (weight) – for example the process
number. Excluding crashed/malfunctioning processes, the process with the
highest priority should always be elected.

√
any process may start an election (e.g. when it fails to establish a

connection with the current coordinator) by sending an election
message to all processes (if it has some knowlegde about the other
processes’ weights, it may ignore weaker processes).

√
when process Pheavy receives an election message from Plight with a

lower priority, it sends a take-over message to Plight and starts a new

election.
√

if a process receives no take-over messages, it has been elected and

must communicate its victory to other processes.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 42/54

The Bully Election Algorithm (2)

To make the figure more readable assume that processes know the weights
of all others (actually a simpler algorithm is possible in this case).

1

2

4

0

5

6

3

7

1

2

4

0

5

6

3

7

1

2

4

0

5

6

3

7

Election

E
le

ct
io

nElection

E
lection

OK

OK

Previous coordinator
has crashed

Ele
ct

io
n

Election

(a) (b) (c)

a. process 4 holds an election,

b. processes 5 and 6 respond, trampling the weakling 4,

c. 5 and 6 hold elections.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 43/54

The Bully Election Algorithm (3)

1

2

4

0

5

6

3

7

1

2

4

0

5

6

3

7

OK
Coordinator

(a) (b) (c)

(d) (e)

d. process 6 crushes the hopes of process 5, sending a take-over
message,

e. process 6 wins and broadcasts its joy.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 44/54

Ring Algorithms (1)

The election is still based on priorities. Processes are organized into a
logical ring.

√
any process may start an election by sending to its successor an

election message (a ballot). If the successor is down, the message is
sent to the next one, and so on.

√
every process forwards the ballot, adding its priority to it.

√
when the ballot returns to the initiator, it contains a full list of the

currently available processes and their priorities.
√

the initiator sends the list or just the identifier of the heaviest process to

all processes.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 45/54

Ring Algorithms (2)

1

0

5

4

7

6

3

2

[2]

[2,3]

[5,6]

[5,6,0]

[5]

Election message

No response

Previous coordinator
has crashed

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 46/54

Ring Algorithms (3)

The previous algorithm transmits more data than strictly necessary. It can be
simplified as follows:

√
any process may start an election by sending a ballot with its identifier

and priority to its successor. If the successor is down, the next process
on the ring is contacted, and so on.

√
receiver compares the priority on the ballot with its own priority:

? if the priority on the ballot is higher, the process forwards the ballot
to the successor without changes (variant: the process may store
the data from the ballot),

? if the priority on the ballot is lower, the ballot is discarded and the
process sends to the successor a new ballot with its own identifier
and priority.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 47/54

Ring Algorithms (4)

√
a process that receives a ballot with its own identifier is the winner. The

result can be communicated in two ways:

? the winner informs everybody, using broadcast or a „winner”
message forwarded along the ring,

? if the processes stored the information from the received ballot, the
winner doesn’t have to do anything, a timeout suffices – this
version works, but is more fragile, a lost packet can change the
outcome of the election.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 48/54

Mutual Exclusion

A number of processes in a distributed system want exclusive access to some
resource (they want to enter a critical region/section). A mutual exclusion
mechanism is needed – a lock (also called a mutex).
Standard solutions:
√

via a centralized server,
√

completely distributed, with no topology imposed,
√

completely distributed, making use of a logical ring.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 49/54

MutEx: A Centralized Algorithm

(a) (b) (c)

0 0 01 1 1

3 3 3

2 2

2

2

Request
Request ReleaseOK

OK

Coordinator

Queue is
empty

No reply

1. Process 1 asks the coordinator for permission to enter a critical region.
The resource is fre, so permission is granted.

2. Process 2 then asks permission to enter the same critical region. The
coordinator does not reply.

3. When process 1 exits the critical region, it releases the resource by
informing the coordinator, who then replies to process 2, allowing it
access.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 50/54

MutEx: Ricart & Agrawala Algorithm (1)

Ricart & Agrawala algorithm – completely distributed, with no topology
imposed.

√
the same as Lamport except that acknowledgments aren’t sent.

√
a process wishing to access a shared resource broadcasts a request to

all other processes. The receiving process sends a reply (a grant), if
and only if:

? the receiving process has no interest in the shared resource, or

? the receiving process is waiting for the resource, but has lower
priority (known through comparison of time-stamps – earlier
requests have priority).

√
in all other cases (the process currently uses the resource or is waiting

for it with higher priority than the newcomer), reply is deferred, implying
some more local administration.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 51/54

MutEx: Ricart & Agrawala Algorithm (2)

0 0 0

1 1 12 2 2

8

8
8 12

12

12

OK OK

OK

OK

Enters
critical
region

Enters
critical
region

(a) (b) (c)

1. Two processes want to enter the same critical region at the same
moment.

2. Process 0 has the lowest timestamp, so it wins.

3. When process 0 is done, it sends an OK also, so 2 can now enter the
critical region.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 52/54

MutEx: A Token Ring Algorithm

1

0
0

2

3

4

5

6

7

2 4 9 7 1 6 5 8 3

(a) (b)

1. Physically – an unordered group of processes on a network.

2. Logically – a ring constructed in software, around which a token is
forwarded.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 53/54

Mutual Exclusion - Comparison

Messages per Delay before entry Potential

Algorithm entry/exit (in message times) problems

Centralized 3 2 Coordinator crash

Distributed 2(n − 1) 2(n − 1) Crash of any process

Token Ring 1 to ∞ 0 to n − 1 Lost token, process crash

The token ring algorithm requires a second token to be circulated if the
resource is being used for a very long time – this is an information that the
token hasn’t been lost. Alternatively exceedingly long critical sections can be
banned.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization – general purpose algorithms – p. 54/54

	Synchronization
	Clock Synchronization
	Timers -- Real Time Clocks
	Time Definitions
	Time Definitions -- Atomic Time
	Time Standards
	UTC Standard
	Clock Synchronization
	Clock Synchronization -- Two Approaches
	Clock Synchronization Algorithms
	Cristian's Algorithm
	Berkeley Algorithm
	Averaging algorithms
	Logical clocks
	The Happened-Before Relation
	Logical Clocks (1)
	Logical Clocks (2)
	Logical Clocks (3)
	Total Ordering of Events Using Lamport's Time
	Example: Totally-Ordered Multicasting
	Vector Timestamps (1)
	Vector Timestamps (2)
	Vector Timestamps (3)
	Causal Delivery of Messages Example -- Setting
	Causal Delivery of Messages Example -- Rules
	Causal Delivery of Messages Example -- Problem
	Causal Delivery of Messages Example (1)
	Causal Delivery of Messages Example (2)
	Causal Delivery of Messages Example (3)
	Global System State (1)
	Global System State (2)
	Global System State (3)
	Global System State -- Example
	Global System State -- Example
	Global System State -- Example
	Global System State -- Example
	Global System State -- Example
	Global System State -- Example
	Global System State -- Example
	Election algorithms
	The Bully Election Algorithm (1)
	The Bully Election Algorithm (2)
	The Bully Election Algorithm (3)
	Ring Algorithms (1)
	Ring Algorithms (2)
	Ring Algorithms (3)
	Ring Algorithms (4)
	Mutual Exclusion
	MutEx: A Centralized Algorithm
	MutEx: Ricart & Agrawala Algorithm (1)
	MutEx: Ricart & Agrawala Algorithm (2)
	MutEx: A Token Ring Algorithm
	Mutual Exclusion - Comparison

