
Distributed Operating Systems

Synchronization in Databases

dr inż. Adam Kozakiewicz

akozakie@ia.pw.edu.pl

Institute of Control and Information Engineering

Warsaw University of Technology

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization in Databases – p. 1/29

Distributed Transactions

1. Transaction model
√

ACID properties

2. Classification of transactions
√

flat transactions,
√

nested transactions,
√

distributed transactions.

3. Concurrency control
√

serializability,
√

synchronization techniques

? two-phase locking,
? pessimistic timestamp ordering,
? optimistic timestamp ordering.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization in Databases – p. 2/29

The Transaction Model (1)

Computer

New
inventory

Output tape
Input tapes

Previous
inventory

Today's
updates

A well prepared update operation is fault resistant. Even if something goes
wrong, nothing bad happens.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization in Databases – p. 3/29

The Transaction Model (2)

Examples of primitives for transactions:

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization in Databases – p. 4/29

The Transaction Model (3)

a. a transaction to reserve three flights, successful – ends in commit,

b. transaction aborted when the third flight is unavailable, no changes to
the database made.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization in Databases – p. 5/29

ACID Properties

Transaction
Collection of operations on the state of an object (database or other) that

satisfies the following properties:

Atomicity Either all operations succeed, or all of them fail. Failure of one
operation decides that the whole transaction must fail. The object state
is unaffected by a failed transaction.

Consistency A transaction establishes a valid state transition, that is given an
initially consistent object it will leave it in a consistent state.
Intermediate states during the transaction’s execution may be invalid.

Isolation Concurrent transactions do not interfere with each other. To each
transaction it appears, that other transations occur either before or after
it – never both.

Durability A successful transaction has permanent effects – changes to the
object’s state survive any subsequent failures.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization in Databases – p. 6/29

Transaction Classification

Flat transactions
The simplest and most familiar case – a sequence of operations that

satisfies the ACID properties.

Nested transactions
A hierarchy of transactions that allows:
√

concurrent execution of subtransactions,
√

recovery (rollback) per subtransaction.

Distributed transactions
Flat transactions executed on distributed data. Usually implemented as a

two-level nested transaction with one subtransaction per node.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization in Databases – p. 7/29

Flat Transactions – Limitations

√

Partial results cannot be independently committed or aborted.
√

Strong atomicity may be a weakness.
√

Solution: nested transactions.
√

Difficult scenarios:

? Erroneus partial commit – subtransaction is already committed, but
the higher-level transaction is subsequently aborted.

? Sequence of subtransactions – if one subtransaction commits and
a new one is started, the new one must have available the results
of the first one.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization in Databases – p. 8/29

Distributed Transactions

√

a nested transaction is logically decomposed into a hierarchy of

subtransactions
√

a distributed transaction is logically flat, indivisible, but it operates on

distributed data. Separate distributed algorithms are required to handle
the locking of data and committing of the entire transaction.

Airline database Hotel database

Subtransaction SubtransactionSubtransaction Subtransaction

Nested transaction Distributed transaction

Distributed database

Two different (independent)
databases

Two physically separated
parts of the same database

(a) (b)

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization in Databases – p. 9/29

Transactions – Implementation Methods

1. private workspace
√

each transaction uses a private workspace, with a copy of the part

of the database that it uses; commit operation is a simple copy
command (or just a change in the index), abort operation is even
easier – just delete the workspace,

√

only copy what you really need – a lot of room for optimization.

2. write-ahead log
√

all changes recorded in a write-ahead log, allowing a rollback.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization in Databases – p. 10/29

Transactions: Private Workspace

1 2

1 1 1

2

33

2 2 2

0 1

0

0

0 0

0

Index

Original
index

Private
workspace

Free blocks

(a) (b) (c)

3

2

3

1

0

1

2

0

a. The file index and disk blacks for a three-block file.

b. Situation during transaction, after it has modified block 0 and appended
block 3.

c. After committing.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization in Databases – p. 11/29

Transactions: Write-Ahead Log

a. A transaction,

b.-d. The write-ahead log after each operation.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization in Databases – p. 12/29

Transactions: Concurrency Control (1)

Transaction
manager

Scheduler

Data
manager

READ/WRITE BEGIN_TRANSACTION
END_TRANSACTION

LOCK/RELEASE
or

Timestamp operations

Execute read/write

Transactions

General organization of managers in a transaction handling mechanism.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization in Databases – p. 13/29

Transactions: Concurrency Control (2)

Transaction
manager

Scheduler Scheduler Scheduler

Data
manager

Data
manager

Data
manager

Machine A Machine B Machine C

General organization of managers in a distributed transaction handling
mechanism.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization in Databases – p. 14/29

Serializability (1)

a.-c. Three transactions: T1, T2 i T3,

d. Possible schedules.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization in Databases – p. 15/29

Serializability (2)

Consider a collection E of transactions T1, . . . , Tn. Conduct a serializable
execution of E:

√

transactions in E may be executed concurrently, according to some

schedule S ,
√

schedule S is equivalent to some totally ordered execution of T1, . . . , Tn.

We are not concerned with any computations done within each transaction, so
a transaction can be represented as a sequence of read and write operations.

Two operations OPER(Ti, x) and OPER(T j, x) on the same data item x from

two transactions Ti and T j may conflict at a data manager:

read-write conflict (rw) one is a read operation on x and the other is a write
operation on x,

write-write conflict (ww) both are write operations on x.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization in Databases – p. 16/29

Synchronization Techniques

1. Two-phase locking
Before reading or writing a data item, a lock must be obtained. After

one lock is given up, the transaction may not acquire any more locks.

2. Pessimistic timestamp ordering
Operations in a transaction are time-stamped. Data managers are

required to handle operations in timestamp order.

3. Optimistic control

Don’t prevent any conflicts, detect them instead, then correct the
situation. Optimistic assumption: you can pull it off in most cases (and
get away with it without causing a major breakdown). In other words –
conflicts must be rare.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization in Databases – p. 17/29

Two-Phase Locking (1)

√

clients only do READ and WRITE operations within transactions,
√

locks are granted and released only by the scheduler,
√

locking policy avoids conflicts between operations.

1. When a client submits OPER(Ti, x), the scheduler checks whether it
conflicts with any operation OPER(T j, x), i , j. If not, a lock LOCK(Ti, x)
is granted, otherwise execution of OPER(Ti, x) is delayed.
√

conflicting operations are executed in the order of granting locks.

2. If LOCK(Ti, x) has been granted, it may not be released until the data
manager has executed OPER(Ti, x).

3. If RELEAS E(Ti, x) has taken place, no more locks will be granted to Ti.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization in Databases – p. 18/29

Two-Phase Locking (2)

Growing phase Shrinking phase

Lock point
N

u
m

b
e

r
o
f

lo
c
k
s

Time

Two-phase locking.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization in Databases – p. 19/29

Two-Phase Locking (3)

Types of two-phase locking (2PL):

Centralized 2PL one scheduler handles all locks.

Primary 2PL Each data item x is assigned a primary site (scheduler) to
handle its locks. Data is not replicated.

Distributed 2PL Assumes that data can be replicated. Each primary is
responsible for handling locks for its own data, which may reside at
remote data managers.

Problems:
√

Possibility of a deadlock – solved by ordered acquiring, deadlock

detection or timeouts,
√

cascaded aborts – solved by strict two-phase locking.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization in Databases – p. 20/29

Strict Two-Phase Locking

Growing phase Shrinking phase

Lock point

Time

N
u

m
b

e
r

o
f

lo
c
k
s

All locks are released
at the same time

Strict two-phase locking.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization in Databases – p. 21/29

Pessimistic Timestamp Ordering (1)

√

each transaction T has a timestamp ts(T),
√

timestamps are unique (Lamport’s algorithm with client numbers),
√

each operation within T is stamped with ts(T),
√

each data item x has a read timestamp tsRD(x) and a write timestamp
tsWR(x),

√

in case of conflict, the operation with the lowest timestamp is processed

first,
√

compared to 2PL: cascading aborts are now possible, but there are no

deadlocks.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization in Databases – p. 22/29

Pessimistic Timestamp Ordering (2)

tsW tsR W(T1)

tsWtsR W(T1)

tsW tsRW(T1)

tsWtsR W(T1)

tsW tsRW(T1)

tsWtsRW(T1)

tsW tsR R(T1)

tsWtsR R(T1)

tsW tsRR(T1)

tsWtsR R(T1)

tsW tsRR(T1)

tsWtsRR(T1)

OK

OK

ABORT

ABORT
(IGNORE?)

ABORT

ABORT

OK

OK

OK

ABORT

ABORT

ABORT

TIME TIME

Possible orderings of timestamps, excl. equal (same transaction) timestamps

Many variants – revisions, tentative writes, etc.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization in Databases – p. 23/29

Optimistic Timestamp Ordering

Assumptions:
√

conflicts are rare,
√

just go ahead, do whatever you like, conflicts will be resolved later,
√

all read and write operations are logged (private workspaces,shadow

copies),
√

on commit attempt, check for possible conflicts.

Features:
√

no deadlocks, great parallelism,
√

breaks down easily under load – too many conflicts,
√

not for distributed systems,
√

academic approach – hardly implemented in practice, even in prototype
systems.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization in Databases – p. 24/29

MySQL: Transactions (1)

By default, MySQL runs in autocommit mode – each modification to the
database is immediately executed.

√

SET AUTOCOMMIT = {0 | 1}

Using transactions:
√

START TRANSACTION [WITH CONSISTENT SNAPSHOT]| BE-

GIN [WORK]
√

COMMIT [WORK] [AND [NO] CHAIN] [[NO] RELEASE]
√

ROLLBACK [WORK] [AND [NO] CHAIN] [[NO] RELEASE]

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization in Databases – p. 25/29

MySQL: Transactions (2)

√

A ROLLBACK command after updating a non-transactional table causes

a warning. Changes to transaction-safe tables are rolled back, but the
rest stays.

√

InnoDB – a transaction-safe storage engine for MySQL,
√

MySQL uses table-level locking for MyISAM and MEMORY engines,

page-level locking for BDB and row-level locking for InnoDB.

√

Not all statements may be rolled back! This mainly concerns DDL

statements (create/drop table, database, alter table, stored routines...)

√

No nested transactions! START TRANSACTION statement and its

synonyms invoke COMMIT at the beginning.

√

SELECT ... FOR UPDATE and SELECT ... LOCK IN SHARE MODE

influence the interation between transactions (in lower isolation levels)

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization in Databases – p. 26/29

MySQL: Savepoints

Savepoint syntax:
√

SAVEPOINT identifier
√

ROLLBACK [WORK] TO SAVEPOINT identifier
√

RELEASE SAVEPOINT identifier

√

ROLLBACK TO SAVEPOINT only rolls back to the named savepoint. Row

locks (InnoDB) are not released.
√

COMMIT or ROLLBACK without a named savepoint delete all savepoints.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization in Databases – p. 27/29

MySQL: Isolation Levels in InnoDB (1)

√

SET [SESSION | GLOBAL] TRANSACTION ISOLATION LEVEL

{READ UNCOMMITTED | READ COMMITTED | REPEATABLE READ | SE-

RIALIZABLE}
√

SELECT @@global.tx_isolation;
√

SELECT @@tx_isolation;

√

In the default REPEATABLE READ isolation level read operations

(SELECT) create a per-transaction timestamp – from that moment the
state is fixed. Modifications from other transactions are invisible.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization in Databases – p. 28/29

MySQL: Isolation Levels in InnoDB (2)

READ UNCOMMITTED SELECT does not use locks, but it may use an
earlier version of the row. Reads are not consistent (dirty read).
Otherwise its just like READ COMMITTED.

READ COMMITTED As in other databases – every read works on its own
fresh snapshot.

REPEATABLE READ The default, a consistent snapshot is established by
the first read operation. New snapshot requires closing (committing or
aborting) the transaction.

SERIALIZABLE Same as REPEATABLE READ, but InnoDB executes all
SELECT operations as SELECT ... LOCK IN SHARE MODE.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Synchronization in Databases – p. 29/29

	Distributed Transactions
	The Transaction Model (1)
	The Transaction Model (2)
	The Transaction Model (3)
	ACID Properties
	Transaction Classification
	Flat Transactions -- Limitations
	Distributed Transactions
	Transactions -- Implementation Methods
	Transactions: Private Workspace
	Transactions: Write-Ahead Log
	Transactions: Concurrency Control (1)
	Transactions: Concurrency Control (2)
	Serializability (1)
	Serializability (2)
	Synchronization Techniques
	Two-Phase Locking (1)
	Two-Phase Locking (2)
	Two-Phase Locking (3)
	Strict Two-Phase Locking
	Pessimistic Timestamp Ordering (1)
	Pessimistic Timestamp Ordering (2)
	Optimistic Timestamp Ordering
	MySQL: Transactions (1)
	MySQL: Transactions (2)
	MySQL: Savepoints
	MySQL: Isolation Levels in InnoDB (1)
	MySQL: Isolation Levels in InnoDB (2)

