
Distributed Operating Systems

Computing Grids

dr inż. Adam Kozakiewicz

akozakie@ia.pw.edu.pl

Institute of Control and Information Engineering

Warsaw University of Technology

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 1/38



Computing Grids

√

Problems with the definition of grids
√

Properties of grids
√

Virtual organization
√

Files in a grid
√

Standards in the world of grid development

? OGSA/OGSI

? GridRPC

? JSDL
√

Examples of grid middleware

? NEOS

? *@home, BOINC

? Condor

? Unicore

? Globus Toolkit, LCG, gLite...

? Ninf, NetSolve

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 2/38



Problems with the Definition of Grids

Grid

√

is a hardware and software infrastructure providing reliable, consistent,

cheap and ubiquitous access to high performance computing resources.
√

is a mechanism for controlled and coordinated sharing of resources in

dynamic, scalable virtual organizations.
√

is a collection of loosely coupled, geographically distributed,

heterogenous computing resources.

Do not confuse the general definition with the (utopian?) idea of The Grid: a
generalization of the idea of Internet, a single grid including most of the
world’s computing resources, reducing the problem of solving arbitrarily large
problems to creation of a sufficiently large virtual organization.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 3/38



Properties of Grids (1)

√

Single log-on
√

Automatic process scheduling and data transfers
√

Heterogeneous but virtually homogenous environment
√

Use of open standards in protocols and interfaces
√

Straighforward adding and removing resources to/from the grid
√

Scalability
√

Fault resistance

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 4/38



Properties of Grids (2)

√

Simple, easy to use interface
√

Process migration
√

Autonomy of computing centers
√

High level of security
√

Compatibility and stability
√

Minimal constraints for the user

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 5/38



Virtual Organizations

How to solve the problem of granting access to thousands of resources to

thousands of users?

Virtual organizaton

a set of people and organizations sharing grid resources for a common
goal.

√

access to resources is granted to virtual organizations instead of

individual users,
√

a user may be a member of more than one VO, in every project he must

identify himself as a member of one of them.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 6/38



Files in a Grid

Files in a grid:

√

Local

? Temporary files, files from the user’s disk, etc.

? Submitted as a part of a computational task (job), recieved as the
result, transmitted between subtasks

? Removed after use (except the user’s local files, of course)

√

Mass storage

? Data stored directly in the grid

? Normally used to store large amounts of data – huge files

? Usually cannot be modified, allowed operations are only creation,
reading and removal, making versioning much easier

? Federation and replication are possible

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 7/38



Replication and Federation

Federation
joining of several files in one logical file. Very useful if the amount of data

to be stored is beyond the capabilities of even a large data storage center.

Replication
storing the same data in several locations in the grid with the guarantee

that the copies are absolutely identical. Provides load balancing and
performance increase.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 8/38



Standards in the Grid Community

√

1999 – first meetings of interested parties, initially in the USA, later also

in Europe and Japan,
√

2000 – beginning of an organization called Global Grid Forum, grouping

representatives of scientific/academic institutions (mostly), commercial
companies and other institutions interested in grid technologies, work
on first standards starts,

√

2006 – GGF merges with EGA (Enterprise Grid Alliance), creating

Open Grid Forum (OGF).

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 9/38



OGSA/OGSI

OGSA – Open Grid Services Architecture, is a standard describing the
architecture of a grid system.

OGSI – Open Grid Services Implementation was supposed to be a
specification for implementation of OGSA, but slow performance forced the
OGF to scrap the idea of Grid Services and use WSRF instead.

Main assumption of OGSA – use of Web Services, implying:

√

communication via HTTP
√

remote function calls using SOAP
√

interface specification using WSDL
√

broad use of XML

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 10/38



OGSA – Outline of the Specification (1)

Infrastructure Services

Specification of methods for accessing resources, defines the set
of technologies (SOAP, WSDL, etc.), naming system (addressing),
basic security mechanisms, state preservation techniques, etc.

Execution Management Services

Mechanisms for job submission and monitoring. Discusses the
problems of job-resource matchmaking, job preparation execution
and monitoring. The most important part for an end user is the
selection of JSDL as the standard job description language.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 11/38



OGSA – Outline of the Specification (2)

Data Services

Mechanisms for data management in a grid. Discusses remote
access, replication and federation of data, providing data for
computing jobs, automatic data conversions, storing and
accessing metadata.

Resource Management Services

Mechanisms for resource management, both on the basic
hardware and software level and on the grid services level.

Security Services

Methods for securing the grid, including a detailed specification of
a security model based on virtual organizations. Discusses
problems of rights delegation, mapping of grid users to local
accounts, etc.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 12/38



OGSA – Outline of the Specification (3)

Self-Management Services

Methods providing adaptability of the grid: detection of
malfunctions, automatic reorganization of the grid (bypassing the
broken part), optimization of performance through monitoring of
the performance of individual resources, etc.

Information Services

Collection and publication of all kinds of information about the
grid – finding resources with given properties, monitoring their
status, and so on.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 13/38



OGSA – Layers

Layers of the Open Grid Services Architecture:

1. Fabric

2. Connectivity

3. Resource

4. Collective

5. Application

The application layer has direct access to connectivity, resource and
collective layers.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 14/38



GridRPC, JSDL

JSDL

Job description language based on XML.
√

Job contents
√

Requirements for the system executing this job
√

Location of data
√

Scheduler preferences
√

No support for complex jobs (subjob graphs, parametric jobs)

GridRPC

API enabling distributed programming in a grid environment using
the RPC paradigm. Standard supported by both mature solutions
in this group (NetSolve and Ninf), but ambiguous, allowing slight
differences in interpretation, resulting in incompatibility of both
solutions and reduced portability of code (luckily the difference is
really small and easy to fix).

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 15/38



Grid Middleware

Grid middleware examples:
√

NEOS
√

…@home solutions, including BOINC
√

Condor
√

Unicore
√

Globus Toolkit and related middleware packages
√

GridRPC solutions

? NetSolve

? Ninf

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 16/38



NEOS

NEOS – Network Enabled Optimization System – a simple system

providing remote access to optimization problem solvers, with many
properties of a grid. Can be adapted for other applications.

MetaNEOS, project of a next-gen NEOS is a lot more grid-like, but the project
seems dormant, with very little development activity.

√

Client
√

Server
√

Solver

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 17/38



*@home, BOINC

√

Grids for very well decomposable tasks.
√

SETI@home (Berkeley)

? the first popular program of this type

? 55 TFLOPS when the world’s most powerful supercomputer was the Earth Simulator

in Japan, with 40 TFLOPS
√

BOINC

? new version of the SETI@home software

? much more universal – a complete middleware system, enabling users to create

their own projects

? January 2008: 815 TFLOPS (compared to 478 TFLOPS of the fastest HPC system

on TOP 500 in November 2007), including SETI@home 373 TFLOPS
√

Folding@home (Stanford)

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 18/38



*@home, BOINC

√

Grids for very well decomposable tasks.
√

SETI@home (Berkeley)

? the first popular program of this type

? 55 TFLOPS when the world’s most powerful supercomputer was the Earth Simulator

in Japan, with 40 TFLOPS
√

BOINC

? new version of the SETI@home software

? much more universal – a complete middleware system, enabling users to create

their own projects

? January 2008: 815 TFLOPS (compared to 478 TFLOPS of the fastest HPC system

on TOP 500 in November 2007), including SETI@home 373 TFLOPS
√

Folding@home (Stanford)

? client software for ATI graphics cards (0.2% of clients, but 3.5% TFLOPS!)

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 19/38



*@home, BOINC

√

Grids for very well decomposable tasks.
√

SETI@home (Berkeley)

? the first popular program of this type

? 55 TFLOPS when the world’s most powerful supercomputer was the Earth Simulator

in Japan, with 40 TFLOPS
√

BOINC

? new version of the SETI@home software

? much more universal – a complete middleware system, enabling users to create

their own projects

? January 2008: 815 TFLOPS (compared to 478 TFLOPS of the fastest HPC system

on TOP 500 in November 2007), including SETI@home 373 TFLOPS
√

Folding@home (Stanford)

? client software for ATI graphics cards (0.2% of clients, but 3.5% TFLOPS!)

? client software for Playstation 3 (12.6% of clients, but 74% of TFLOPS!)

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 20/38



*@home, BOINC

√

Grids for very well decomposable tasks.
√

SETI@home (Berkeley)

? the first popular program of this type

? 55 TFLOPS when the world’s most powerful supercomputer was the Earth Simulator

in Japan, with 40 TFLOPS
√

BOINC

? new version of the SETI@home software

? much more universal – a complete middleware system, enabling users to create

their own projects

? January 2008: 815 TFLOPS (compared to 478 TFLOPS of the fastest HPC system

on TOP 500 in November 2007), including SETI@home 373 TFLOPS
√

Folding@home (Stanford)

? client software for ATI graphics cards (0.2% of clients, but 3.5% TFLOPS!)

? client software for Playstation 3 (12.6% of clients, but 74% of TFLOPS!)

? mid-January 2008: 1078 TFLOPS total!

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 21/38



Condor

√

HTC system (High Throughput Computing), i.e. designed to process

very many very long jobs, unlike HPC systems (High Performance
Computing), designed to provide very large computing power to a few
currently running jobs.

√

Difficult to classify:

? Cluster-like batch job queuing system (like PBS)

? Volunteer grid using spare processing power (like BOINC)

? Large-scale grid (through flocking)

? Integration with other grid systems (glide-in, also used as a
scheduler for Globus-based grids)

√

A very good, universal scheduler, based on ClassAd:

? Resources report their properties and capabilities

? Submitted jobs include a list of requirements (architecture,
operating system, software, etc.)

? Scheduler finds matches, assigns jobs only to capable machines

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 22/38



Properties of a Condor System (1)

√

State snapshots and checkpoint-based migration (requires linking with

Condor libraries)
√

Remote system calls

? no need to have an account on the remote machine or explicitly
make files remotely accessible

? a program started by Condor acts as if it was running on the
machine, on which it was submitted, regardless of the actual
machine running it.

? only available in the Standard Universe
√

Programs require no changes to the source code, linking with Condor

libraries is sufficient; even if this is also not possible, a program may
still be run in Condor, albeit with reduced functionality

√

Joining of machine pools, a.k.a. flocking – separate machine pools may

transfer jobs to each other

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 23/38



Properties of a Condor System (2)

√

Job queuing – a directed acyclic graph can be used to define

relationship between subtasks
√

Grid computation:

? can be used as a queue manager and scheduler for grids based on
Globus Toolkit

? glide-in – remote job submission by Condor to a grid based on
Globus Toolkit

√

Local administrator’s priority – the owner of the machine has absolute,

automatically guaranteed priority over Condor users

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 24/38



Condor – Universes

Universe – a category of Condor jobs. The universe assigned to a job
defines the subset of Condor functionality available to the job.

√

Standard Universe – programs linked with Condor libraries,

checkpointing and remote system calls are available
√

Vanilla Universe – programs that cannot be linked with Condor libraries,

including script jobs
√

PVM Universe – programs using the PVM library
√

MPI Universe – programs using the MPI library
√

Java Universe – programs implemented in Java
√

Globus Universe – Condor as interface to Globus Toolkit, jobs are

translated and forwarded to the GT-based grid
√

Scheduler Universe – internal environment, used by the Condor

scheduler

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 25/38



UNICORE

√

Uniform Interface to Computing Resources
√

Developed in Germany in order to reduce the number of

supercomputing centers
√

Assumptions – the system will be used by experts in fields other than
computers:

? graphical interface for job submission

? plug-ins for the interface providing access to applications installed
on the supercomputers in a point&click way

? very portable client – therefore implemented in Java
√

The system is OGSA-compliant (but not a full implementation of the

standard)

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 26/38



Initial Requrements of the UNICORE Project

Requirements specified at the start of the project (1999):
√

UNICORE must be compatible with all major HPC operating systems.
√

UNICORE may not modify or require modification of the configuration of

those systems.
√

HPC systems must remain autonomous in granting access rights to
users.

√

System must guarantee secure transmission of data via the Internet.
√

UNICORE must cooperate with the security and authentication

mechanisms of the HPC systems.
√

UNICORE must support existing networking technologies.
√

UNICORE must be compatible with both UNIX and Windows systems.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 27/38



UNICORE Functionality (1)

√

Job creation and submission using a GUI, choosing the node on

which the job should be executed. A job may consist of several subjobs,
including jobs executed on other nodes – UNICORE ensures correct
order of execution and transfer of intermediate results.

√

Job management – monitoring the state of every job in a job group

and removing jobs.
√

Data management – for each task, UNICORE creates a temporary

dataspace (called Uspace), and the user defines data sets:

? imported from other UNICORE nodes or from the client workstation,

? exported (final results),

? transferred to other Uspaces (between subjobs).

data management operations are available as separate job, which can
be included in the job group.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 28/38



UNICORE Functionality (2)

√

Applications – the system is focused on providing access to existing,

preinstalled applications, which explains the need for plugins.
√

Data flow management – acyclic directed graph of jobs, with

conditional execution and repeated execution (a given number of times,
or until a condition is satisfied.

√

Meta-computing – UNICORE enables simultaneous use of several

nodes by one application (e.g. MPI) using systems such as PBS Pro.
√

Single log-on using X.509v3 certificates.
√

Support for legacy use patterns – traditional batch processing still

possible using scripts as UNICORE jobs.
√

Resource management – fully decentralized, the user is informed

about currently available resources and the client verifies resource
requirements of the jobs.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 29/38



UNICORE Layers (1)

The system is organized in layers:
√

Client – user interface, the layer communicating directly with the user.
√

Usite – UNICORE Grid Site, main administrative unit of the grid,

created in every computing center, groups resources available within
that center.

√

Vsite – Virtual Site, a group of resources within a Usite.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 30/38



UNICORE Layers (2)

Software layers:
√

Client, user interface, submits jobs using SSL.
√

Gateway, the entry point for a Usite, provides basic authentication of a

user, lists existing Vsites and acts as a gateway in the following
communication.

√

NJS, Network Job Supervisor, provides full authentication and

authorization, translates jobs for the target systems, submits them for
execution, manages the execution (scheduler); also acts as a client
when submitting subjobs specified to run on other Usites…pretty much
does everything.

√

TSI, Target System Interface, inserts jobs as tasks in the local batch

processing system and handles file transfers (the only part of UNICORE
not written in Java, reference implementation in Perl).

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 31/38



Globus et consortes

Globus Toolkit

probably the most important middleware solution.

Versions:

1. of purely historical value

2. breakthrough – popular middleware which formed the basis for several
very large scale projects (e.g. LCG), based on an original, successful
architecture

3. official reference implementation of the original OGSA/OGSI – a flop,
never became really popular due to abysmal performance

4. reference implementation of the current OGSA/WSRF

EDG, LCG, gLite

Functionality extensions for the Globus Toolkit designed for the
LCG/EGEE project, provide things like replica handling, extended
scheduling, etc. Current stable release is gLite 3.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 32/38



Main Building Blocks of the Globus Toolkit

Security Module – an advanced security infrastructure, providing encrypted
transmission, authentication and authorization with single log-on, based
on PKI (X509v3 certificates).

Data Management Module – file transfers and a basic toolkit for handling
replicas.

Execution Management Module – submitting, queuing and execution of jobs.

Information Services Module – provides information about resources
available on each node and their current state, also includes modules
for finding nodes given a set of constraints.

Base Libraries – libraries used during implementation of programs directly
interfacing with the Globus Toolkit, including not only grid libraries, but
also portable implementation of many standard libraries.

Globus 2 – popular protocols with some extensions (LDAP, FTP/GridFTP)
Globus 4 – Web Services (SOAP, HTTP) + backwards compatibility

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 33/38



Elements ot the Globus Toolkit

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 34/38



Globus Toolkit – Additional Information

√

GT may be used not only for building large, complex grids, but also as a

communication infrastructure for a simple grid (e.g. MPICH-G2);
unfortunately it’s very SLOW.

√

Job description languages:

? RSL, Resource Specification Language – Globus 2

? XML Job Description – Globus 4

? JDL, Job Description Language – EDG

? JSDL, still in the works
√

Data model in a gLite grid – see lecture about naming

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 35/38



Ninf and NetSolve

√

GridRPC implementations
√

Ninf – a simple overlay for Globus Toolkit
√

NetSolve – older system, much more functionality and complexity, can

use Globus or work independently, three (!) different IDLs:

? interface configuration file, very difficult to write, but gives very fast
programs

? NetSolve IDL – a later addition, easier to use, but not as good

? GridRPC – newest option
√

Both solutions are not fully mutually compatible.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 36/38



Ninf i NetSolve – Differences

Ninf NetSolve

Globus Toolkit overlay standalone solution, can use Globus

Toolkit as an option

RPC only RPC and a big selection of libraries

a simple, minimalistic solution – Globus

does most of the work

a complicated, heavy system with many

capabilities

a simple, skeleton server, Globus acts as

the agent

complicated server and agent software

works with C and Java works with Matlab, Octave, Mathematica,

C and Fortran 77

multidimentional arrays can be sent di-

rectly

multidimentional arrays must be packed

into one-dimentional ones before sending

not MT-Safe (explicit synchronization nec-

essary in multithreaded programs)

MT-Safe

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 37/38



Most Important European Grid Projects

√

Grid for LHC (Large Hadron Collider ):

? LCG, LHC Computing Grid

? EGEE, Enabling Grids for e-Europe and EGEE-II – successors

? GEANT, DataGrid (EDG), …– helpers

? huge amounts of data: 40TB per day, 15PB per year
√

EuroGRID – UNICORE based grids (BioGRID, MeteoGRID, …)
√

GRIP – tool development – integration of UNICORE and Globus Toolkit.
√

Main grid centers in Poland (former members of CrossGRID):

? ICM, Warszawa – Interdyscyplinarne Centrum Modelowania
Matematycznego i Komputerowego Uniwersytetu Warszawskiego,

? PSNC, Poznań – Poznańskie Centrum Superkomputerowo

Sieciowe (acronym: Poznań Supercomputing and Networking
Center),

? Cyfronet, Kraków – Akademickie Centrum Komputerowe Cyfronet
AGH.

Dept. of Electronics and Information Technology, Warsaw University of Technology Distributed Operating Systems / Computing Grids – p. 38/38


	Computing Grids
	Problems with the Definition of Grids
	Properties of Grids (1)
	Properties of Grids (2)
	Virtual Organizations
	Files in a Grid
	Replication and Federation
	Standards in the Grid Community
	OGSA/OGSI
	OGSA -- Outline of the Specification (1)
	OGSA -- Outline of the Specification (2)
	OGSA -- Outline of the Specification (3)
	OGSA -- Layers
	GridRPC, JSDL
	Grid Middleware
	NEOS
	*@home, BOINC
	*@home, BOINC
	*@home, BOINC
	*@home, BOINC
	Condor
	Properties of a Condor System (1)
	Properties of a Condor System (2)
	Condor -- Universes
	UNICORE
	Initial Requrements of the UNICORE Project
	UNICORE Functionality (1)
	UNICORE Functionality (2)
	UNICORE Layers (1)
	UNICORE Layers (2)
	Globus ee {et consortes}
	Main Building Blocks of the Globus Toolkit
	Elements ot the Globus Toolkit
	Globus Toolkit -- Additional Information
	Ninf and NetSolve
	Ninf i NetSolve -- Differences
	Most Important European Grid Projects

