
1

Proc. 5th International Symposium on Methods and Models in Automation and
Robotics MMAR’98, 25–29 August 1998, Międzyzdroje, Poland, Vol.3, pp.795–800

MULTI-ROBOT SYSTEM CONTROLLERS
†

C. ZIELIŃSKI∗, A. RYDZEWSKI∗, W. SZYNKIEWICZ∗

∗Warsaw University of Technology, Institute of Control and Computation Engineering,
ul. Nowowiejska 15/19, 00-665 Warsaw, POLAND, C.Zielinski@ia.pw.edu.pl

Abstract. The paper proposes a structure for open, hierarchical, multi-device con-
trollers. The proposed structure takes into account that the system may contain
several robots of different type, a certain number of cooperating devices, diverse sen-
sors and the fact that the task, the system has to execute, and the number and type
of its components may vary considerably over time. Both the hardware and software
parts of the system are described herein. The flexibility of the system is due to the
software, so the programming aspect is treated comprehensively in the paper.

Key Words. robot controllers, multi-robot systems, robot programming

1 INTRODUCTION

Robot controllers and the programming languages
they interpret are inseparably bound together.
Robots have to execute ever more complex and
diverse tasks. The components of the system, i.e.
number and type of robots, number and type of
cooperating devices, number and kind of exter-
nal sensors, that are necessary to carry out the
job are not known before the task is specified and
the solution to the problem is found. Controllers
and programming methods of such systems have
to take into account this fact. There are two so-
lutions to this problem. Either the controller, and
so its method of programing, has to be very uni-
versal, or the controller can be very specialised,
but then it must be very easy to design, so that
a specific controller for any task at hand can be
designed quickly. This proposal follows the latter
approach. It consists of: a general structure of
the controller, a moderately sized set of construc-
tion modules that facilitate the construction of
specialised controllers, and a method for both de-
signing these controllers and for constructing and
adding new modules to the original set.

†
Supported by Warsaw University of Technology statu-
tory grant 504/036/7 and Program in Control, Information
Technology and Automation PATIA.

Initially the idea of universal robot controllers and
programming languages prevailed in the robotics
community (e.g. WAVE [12], AL [11], AML [13], RAPT
[1], SRL [5], TORBOL [14]). It soon turned out
that such a controller has to be able to interpret
a very complex language, having the same abil-
ities that universal programming languages have
and, moreover, extra capabilities for dealing with
robots and sensors. Even when a general purpose
programming language was adopted as a basis,
a robot programming language had to have ex-
tensions (i.e. instructions and data types) due to
specific devices composing the system. It was ex-
tremely difficult to decide what kind of additional
components should this general purpose language
contain so that any foreseen system could be con-
trolled and programmed. So this “universal” ap-
proach has been given up for cases where it was
expected that the system hardware may vary con-
siderably with changing tasks. Paradoxically it
turned out that the “universal” systems are much
better suited to dealing only with initially well de-
fined classes of tasks. In such a case the language
can be tailored to the system configuration and
the class of tasks at hand. Obviously, the broader
the class the more universal the language.

Soon however, another idea emerged. Instead of
defining a language that would have nearly all the
components of a general purpose language and,

Operator

?#
"

!

User
Interface Process

UI

?
6#

"

!

Master
Process
MP

?
6'

&

$

%

Effector
Control
Process
ECPj,

j = 1, . . . , ne

?
6'

&

$

%

Effector
Driver
Process
EDPj,

j = 1, . . . , ne

?
6

Effectorj , j = 1, . . . , ne

Actuator Tool Outputs

-
�

'

&

$

%

Virtual
Sensor
Process
VSPl,

l = 1, . . . , nv

?
6

Real
Sensors

�

?

'

&

$

%

System
Response
Process
SRP

666

-

Fig. 1 Structure of a MRROC++ controller (ne – number of effectors, nv – number of virtual sensors)

moreover, a few additions taking into account the
particular needs of robot system control, it be-
came evident that it is much more convenient to
use a universal language and to code the robot
specifics as a library of software modules. This
idea was followed in: RCCL [7], ARCL [6], RCI [10],
KALI [8, 9, 2], RORC [16, 15], MRROC [16, 17]; PASRO
[4, 5]. Usually procedural programming paradigm
has been followed, but currently this changes to
object–oriented approach [18]. Moreover, by the-
oretical investigations, it has been shown that the
number of modules in the library can be limited
to a very reasonable quantity. The same research
pointed out that regardless of the number and
type of both robots and sensors the general pur-
pose language has to have a single, but a rather
complex, or two much more compact robot in-
structions as its extensions to become a robot
programming language capable of controlling any
robotic system and executing any task [20, 21].

2 STRUCTURE OF A
MRROC++
CONTROLLER

This paper describes the general structure of
an object-oriented version of the Multi-Robot
Research-Oriented Controller: MRROC++. Theoret-
ical reason for selecting this structure is presented
in [16, 20, 21]. This structure is divided into two
parts. One is responsible for the execution of the
user’s task and is robot independent, and the other
controls specific robots and is task independent.
The paper concentrates on the latter part of this
system, namely on the Effector Driver Process.
Both the software and the hardware component
of this part of the system are described on an ex-
ample of a controller of a prototype robot [3].

As it has already been mentioned, MRROC++ is a
library of software modules (i.e. classes, objects,
processes and procedures) that can be used to con-
struct any multi-robot system controller. This set
of ready made modules can be extended by the
user by coding an extra module in C++. The free-

dom of coding is, however, restricted by the gen-
eral structure of the system. New modules have
to conform to this general structure. Even if a
single-robot controller is designed it is assumed
that it can work in a multi-robot environment, so
its controller really has the capability of control-
ling several robots. The same applies to sensors.
Regardless of the fact, wether they are necessary
for the execution of the user’s task, the potential
for their utilisation always exists in the system.

The MRROC++ system has a hierarchical structure
(fig. 1). It runs on PC computers (Pentium or
486 processor based are preferred) connected by
an Ethernet network. This network is supervised
by a real-time operating system QNX-4 [19]. A
single process coordinating the operation of the
whole sytem is called Master Process MP . Each
effector (either a robot or a cooperating device)
has two processes controlling it: Effector Control
Process ECP and Effector Driver Process EDP .
The former is responsible for the execution of the
user’s task dedicated to this effector, and the latter
for direct control of this effector. EDP is super-
vised by ECP . In this way the user’s task and the
effector specific control have been separated and
are independent of each other.

Data obtained from real (i.e. hardware) sensors
usually cannot be used directly in robot motion
control. For instance, to control the arm motion,
only the location of the centre of gravity of an ob-
ject to be grasped would be necessary. In the case
of such a complex sensor as a camera a bit-map
has to be processed to obtain the above mentioned
location. In some other cases a simple sensor in
its own right would not suffice to control the mo-
tion (e.g. a single strain gauge), but several such
sensors deliver meaningful data. The process of
extracting meaningful information for the purpose
of motion control is named data aggregation and
is performed by a virtual sensor. Data aggregation
is done by Virtual Sensor Processes VSP .

Moreover the system contains two processes ded-
icated to the interaction with the operator. User
Interface Process UI handles operator commands.
System Response Process SRP displays all the sys-
tem status and error messages on the screen of the
monitor. Both processes perform in a windows en-
vironment, so operator commands such as: initi-
ation of execution of the user’s program, its ter-
mination or pausing and resuming are done by
clicking on certain icons.

The user’s program (task) is coded by writing
some distinct portions of MP and ECP . There
are three kinds of tasks that multi-robot systems
deal with, namely:

• robots performing independently,
• loosely cooperating robots (e.g. one robot hand-
ing an object to the other one),
• tightly cooperating robots (e.g. common trans-
fer of a rigid object over a specified trajectory).

The first kind requires of the MP only the initi-
ation and termination of the task. The second
requires additionally the synchronisation of the
ECPs, from time to time. In the last case the MP
must generate the trajectory for all the robots. In
this case the ECPs only transfer the MP com-
mands to adequate EDPs.

Move (, ,);

robot ene

?rrr
?

robot e2

?
robot e1

?

sensor vnv

?rrr
?

sensor v2

?
sensor v1

?

trajectory
generator

f∗e (e
i, ci, vi)
&

fT (vi, ci, ei)

?

Wait (, ,);

robot ene

?rrr
?

robot e2

?
robot e1

?

sensor vnv

?rrr
?

sensor v2

?
sensor v1

?

initial
condition

fI(vi, ci, ei)

?

Fig. 2 MRROC++ motion instructions

The user’s parts of both the MP and the ECPs
are composed of the Move and Wait instructions.
On the MP level these instructions (fig. 2) take
as their arguments lists of robots and virtual sen-
sors. On the ECP level, for each ECP only a sin-
gle robot exists, so this robot and a list of sensors
are the arguments of these instructions. More-
over, the Move instruction has an object named
trajectory generator as the third argument, and
the Wait instruction has an object named the con-
dition as the last argument. The generator is re-
sponsible, on the MP level, for the generation of
trajectories of the end-effectors of all the robots
on the list forming the argument of the Move in-
struction. On the ECP level the generator creates
a trajectory for a single robot. The condition, be-
ing the argument of the Wait instruction, if true,
terminates the waiting, and if not causes the sys-
tem to pause. For each Move and Wait instruction
the user writes in C++ his or her own generator and
condition objects. In this way, usually only very
small portions ofMP and ECPs have to be rewrit-
ten when the task changes. The modifications are
cumulated in the separate code of specific genera-
tors and conditions. Errors are dealt with within

EDP commands

?
GET

- ARM
- ROBOT MODEL
- INPUTS

?
SYNCHRO

?
QUERY

?
SET GET

� -

?
SET

- ARM
- ROBOT MODEL
- OUTPUTS

ROBOT MODEL

- KINEMATIC MODEL
- TRANS
- XYZ EULER ZYZ
- XYZ ANGLE AXIS
- SERVO ALGORITHM
- r r r r r

ARM

- number of steps
- value in step no
- ABSOLUTE/RELATIVE

- MOTORS
- JOINTS
- FRAME
- XYZ EULER ZYZ
- XYZ ANGLE AXIS
- r r r r r

- parameter set no
- corrector no

- algorithm no
- algorithm parameter set no

Fig. 3 Effector Driver Process commands

the whole system by exception handling, so the
user needs not deliver the program code responsi-
ble for that. Neither need he or she worry about
the code dealing with the inter-process communi-
cation.

3 EFFECTOR DRIVER
PROCESS

EDP is commanded by its ECP . Its code is not
modified by the user. It varies only when the ef-
fector hardware changes. If the type of the robot
is changed, a new EDP will have to be supplied,
but the user would appreciate, if the remaining
part (i.e. the task dependent part) would not be
altered. To fulfil this requirement a standard EDP
communication protocol has been devised. EDP
is treated as a server interpreting commands is-
sued by all of the remaining parts of the system.
Usually only the UI and an adequate ECP do
that. Being a server the EDP waits for any client
to issue a command. Once the command is de-
livered, it is interpreted and executed. The list

of all commands is presented in fig. 3. If a re-
ply from EDP is required another command has
to be issued by the client (i.e. QUERY). There are
two main commands: SET and GET. The former
influences the state of the EDP and so the robot,
and the latter causes the EDP to read its cur-
rent status. Sometimes, the user needs to exert
simultaneous influence on the robot and to read
its current state, so a SET GET command has been
defined, which causes simultaneous execution of a
SET and GET command. As the majority of robots
has incremental position measuring devices, it is
required that prior to task execution the robot de-
fines its current position in the work-space. This
is usually done only once and by moving the arm
to a known base location. This is caused by the
SYNCHRO command.

The SET command can: set the arm position, i.e.
cause the robot to move to the desired position, re-
define the tool affixed to the arm, change the set of
parameters or the local corrector of the kinematic
model, switch the servo-control algorithm of any
or all of the arm motors, alter the parameters of
the servo algorithm, or set the binary outputs of
the robot controller. The GET command can read:

the current position of the arm, the currently used
tool, and the kinematic model and corrector and
servo algorithm parameters, or the binary inputs
to the robot controller. Switching of kinematic
model parameters and correctors should improve
local precision of arm motions. Modification of
servo algorithms or their parameters can improve
tracking ability. This switch can be performed
when significant load modification is anticipated.

Both the tool and the arm positions can be de-
fined in terms of homogeneous transforms, Carte-
sian coordinates with orientation specified either
as Euler angles or in angle and axis convention.
In the case of the arm position, moreover, it can
be specified in terms of joint angles or motor shaft
angular increments. The arm position argument
in the command can be regarded as an absolute or
relative value. Each motion command SET ARM is
treated as a macro-step. An extra argument speci-
fies into how many interpolation steps it should be
divided. Because the incremental position mea-
surement is delivered simultaneously with com-
manding the new PWM value for the motors, to
obtain a continuous motion without stopping, the
reading has to be delivered to the upper control
layers a few steps before the interpolated motion
terminates. The user has control over that by
specifying in which step number the reading is re-
quired. If this value is one more than the number
of interpolation steps, the reading is delivered af-
ter the motion stops. For uninterrupted trajectory
segment transition it suffices if it is one less than
the number of interpolation steps.

The EDP is really implemented as two processes:
EDP MASTER, which is responsible for client
command interpretation, and SERVO GROUP
which executes the servo algorithm for all of the
arm motors. Currently all the servos are grouped
together, but they can be distributed over several
processes, if required. The SERVO GROUP pro-
cess issues its own commands to the robot hard-
ware, as required by the EDP MASTER process.
If EDP MASTER does not deliver any commands
the SERVO GROUP enters a passive loop, where
it sustains a zero motion increment command,
causing the arm to remain immobile.

4 CONTROLLER
HARDWARE

Each DC electric motor, actuating a degree of free-
dom of the arm, is controlled by a separate axis
controller. The axis controller consists of: a con-
trol microcomputer based on the one-chip MCS-
51 family 80552 microcomputer, a position mea-
surement circuit, a PID regulator and an interface
circuit (fig. 4). Axis controllers are connected to
a PC type master computer through an interface
in such a way that interfacing circuit registers are
mapped into the input-output address-space of the

master computer. The master computer that runs
the EDP . The microcomputer communicates with
it and interprets its commands.

The axis controller has two modes of opera-
tion. In the first one, the servo algorithm
is implemented in the master computer by the
SERVO GROUP process, so the microcomputer
generates the PWM signal and measures the cur-
rent position by using a specialised 32-bit re-
versible counter. In the second mode, besides
performing the above functions it also serves as a
servo-regulator. For this purpose it uses National
Semiconductors LM629 PID controller. In this
case the EDP running on the master computer
does not have to execute the servo algorithm, so
it saves the computation power for other tasks.
Obviously, in this case the algorithm is limited to
PID control only, although its parameters can be
modified. When the LM629 is used the position
measuring counter is not active. In both modes of
operation the microcomputer continuously moni-
tors the state of limit switches and the value of the
DC motor current. Activation of a limit switch or
transition over the threshold current in the motor
causes immediate motor stop and an error message
being sent to the master computer, i.e. to EDP .

5 CONCLUSIONS

The system is currently undergoing intensive test-
ing. Several specialised controllers have been de-
signed using the MRROC++ language/library and
methodology. To check, if this methodology can
be used to design an industrial controller the tra-
jectory teach-in and playback capability have been
introduced into the system.

Another specialised controller has been designed
specially for the purpose of kinematic model cali-
bration. In this case, first, special calibration tra-
jectories are recorded, and then they can be played
back as many times as necessary. In each inter-
mediate pose the arm stops. Position expressed
in motor shaft increments and in Cartesian coor-
dinates and Euler angles is recorded. A program
running on another computer coupled to two elec-
tronic theodolites creates a file with external co-
ordinates of the end effector in each of the inter-
mediate trajectory poses. As the calibration tra-
jectory is stored in a file it can be reproduced as
many times as necessary, so the calibration pro-
cess can be repeated under different working con-
ditions (e.g. load, just after initiation of robot op-
eration, after a long period of operation, in differ-
ent temperatures).

The capability of tight and loose cooperation have
been tested by simulating the second robot. When
work on the system finishes an IRp-6 robot will be
the partner of the prototype robot for which the
MRROC++ controller has been made. It is envisaged
that the prototype robot, because of its unique

Fig. 4 Axis controller

property: high stiffness, can be used for milling. A
controller dedicated to this task is also undergoing
tests now.

REFERENCES

[1] Ambler A. P., Corner D. F.: RAPT1 User’s
Manual . Department of Artificial Intelli-
gence, University of Edinburgh, 1984.

[2] Backes P., Hayati S., Hayward V., Tso K.:
The KALI Multi-Arm Robot Programming
and Control Environment . Proc. NASA Conf.
on Space Telerobotics, 1989.

[3] Bidziński J., Mianowski K., Nazarczuk K.,
Słomkowski T.: A manipulator with an arm
of serial parallel structure. Archives of Me-
chanical Engineering, Vol.39, No.1-2, 1992,
pp.65-78.

[4] Blume C., Jakob W.: PASRO: Pascal for
Robots. Springer-Verlag, Berlin 1985.

[5] Blume C., Jakob W.: Programming Lan-
guages for Industrial Robots. Springer-Ver-
lag, 1986.

[6] Corke P., Kirkham R.: The ARCL Robot Pro-
gramming System. Proc. Int. Conf. Robots
for Competitive Industries, Brisbane, Aus-
tralia, 14-16 July 1993. pp.484-493.

[7] Hayward V., Paul R. P.: Robot Manipulator

Control Under Unix RCCL: A Robot Control
C Library . Int. J. Robotics Research, Vol.5,
No.4, Winter 1986. pp.94-111.

[8] Hayward V., Hayati S.: KALI: An Environ-
ment for the Programming and Control of Co-
operative Manipulators. Proc. American Con-
trol Conf., 1988. pp.473-478.

[9] Hayward V., Daneshmend L., Hayati S.: An
Overview of KALI: A System to Program and
Control Cooperative Manipulators. In: Ad-
vanced Robotics. Ed. Waldron K., Springer-
Verlag, 1989.

[10] Lloyd J., Parker M., McClain R.: Extend-
ing the RCCL Programming Environment to
Multiple Robots & Processors. Proc. of the
IEEE Int. Conf. Robotics & Automation,
1988. pp.465-469.

[11] Mujtaba S., Goldman R.: AL Users’ Manual .
Stanford Art. Int. Lab., 1979.

[12] Paul R.: WAVE: A Model Based Lan-
guage for Manipulator Control . The Indus-
trial Robot, March 1977, pp.10–17.

[13] Taylor R. H., Summers P. D., Meyer J. M.:
AML: A Manufacturing Language. Int. Jour-
nal of Robotics Research, Vol. 1, No. 3, 1982.

[14] Zieliński C.: TORBOL: An Object Level
Robot Programming Language. Mechatronics,
Vol.1, No.4, Pergamon Press, 1991. pp.469-
485.

[15] Zieliński C.: Flexible Controller for Robots
Equipped with Sensors. 9th Symp. Theory
and Practice of Robots & Manipulators,
Ro.Man.Sy’92, 1-4 Sept. 1992, Udine, Italy,
Lect. Notes: Control & Information Sciences
187, Springer-Verlag, 1993. pp.205-214.

[16] Zieliński C.: Robot Programming Methods.
Publishing House of Warsaw University of
Technology, 1995.

[17] Zieliński C.: Control of a Multi-Robot Sys-
tem, 2nd Int. Symp. Methods & Models in
Automation & Robotics MMAR’95, 30 Aug.–
2 Sept. 1995, Międzyzdroje, Poland. pp.603-
608.

[18] Zieliński C.: Object-Oriented Robot Program-
ming , Robotica, Vol.15, 1997. pp.41–48.

[19] QNX System Architecture. Quantum Soft-
ware, 1992.

[20] Zieliński C.: Object–Oriented Programming
of Multi–Robot Systems Utilising Sensory In-
formation. 3rd ECPD Int. Conf. Advanced
Robotics, Intelligent Automation and Active
Systems, 15–17 September 1997, Bremen,
Germany, pp.176–181.

[21] Zieliński C.: Object–Oriented Programming
of Multi–Robot Systems. 4th Int. Symp.
Methods and Models in Automation and
Robotics MMAR’96, 26–29 August 1997,
Międzyzdroje, Poland, pp.1121–1126.

	INTRODUCTION
	STRUCTURE OF A MRROC++ CONTROLLER
	EFFECTOR DRIVER PROCESS
	CONTROLLER HARDWARE
	CONCLUSIONS

