Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization

N. H. Awad ${ }^{1}$, M. Z. Ali ${ }^{2}$, P. N. Suganthan ${ }^{1}$, J. J. Liang ${ }^{\mathbf{3}}$ and B. Y. Qu ${ }^{3}$
${ }^{1}$ School of EEE, Nanyang Technological University, Singapore
${ }^{2}$ School of Computer Information Systems, Jordan University of Science and Technology, Jordan
${ }^{3}$ School of Electrical Engineering, Zhengzhou University, Zhengzhou, China noor0029@ ntu.edu.sg, mzali.pn@ntu.edu.sg, epnsugan@ ntu.edu.sg, liangjing@zzu.edu.cn

Technical Report, Nanyang Technological University, Singapore

And
Jordan University of Science and Technology, Jordan
And
Zhengzhou University, Zhengzhou China

Research on the single objective optimization algorithms is the basis of the research on the more complex optimization algorithms such as multi-objective optimizations algorithms, niching algorithms, constrained optimization algorithms and so on. All new evolutionary and swarm algorithms are tested on single objective benchmark problems. In addition, these single objective benchmark problems can be transformed into dynamic, niching composition, computationally expensive and many other classes of problems.

In the recent years various kinds of novel optimization algorithms have been proposed to solve real-parameter optimization problems, including the CEC' 05 , CEC' 13 , CEC' 14 and CEC'16 Special Session on Real-Parameter Optimization ${ }^{[1][2][2]}$. Considering the comments on the CEC' 14 test suite, we organize a new competition on real parameter single objective optimization.

For this competition, we are developing benchmark problems with several novel features such as new basic problems, composing test problems by extracting features dimension-wise from several problems, graded level of linkages, rotated trap problems, and so on. This competition excludes usage of surrogates or meta-models.

This special session is devoted to the approaches, algorithms and techniques for solving real parameter single objective optimization without making use of the exact equations of the test functions. We encourage all researchers to test their algorithms on the CEC' 17 test suite which includes 29 benchmark functions. The participants are required to send the final results in the format specified in the technical report to the organizers. The organizers will present an overall analysis and comparison based on these results. We will also use statistical tests on convergence performance to compare algorithms that generate similar final solutions eventually. Papers on novel concepts that help us in understanding problem characteristics are also welcome.

The C and Matlab codes for CEC' 17 test suite can be downloaded from the website given below:
http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2017

1. Introduction to the CEC'17 Benchmark Suite

1.1 Some Definitions:

All test functions are minimization problems defined as following:

$$
\operatorname{Min} f(\mathbf{x}), \boldsymbol{x}=\left[x_{1}, x_{2}, \ldots, x_{D}\right]^{\mathrm{T}}
$$

D : dimensions.
$\boldsymbol{o}_{i 1}=\left[o_{i 1}, o_{i 2}, \ldots, o_{i D}\right]^{\mathrm{T}}:$ the shifted global optimum (defined in "shift_data_x.txt"), which is randomly distributed in $[-80,80]^{D}$. Different from CEC' 13 and similar to CEC' 14 each function has a shift data for CEC'17.

All test functions are shifted to \boldsymbol{o} and scalable.
For convenience, the same search ranges are defined for all test functions.
Search range: $[-100,100]^{D}$.
\mathbf{M}_{i} : rotation matrix. Different rotation matrix are assigned to each function and each basic function.

Considering that in the real-world problems, it is seldom that there exist linkages among all variables. In CEC'17, same as CEC'15 the variables are divided into subcomponents randomly. The rotation matrix for each subcomponents are generated from standard normally distributed entries by Gram-Schmidt ortho-normalization with condition number c that is equal to 1 or 2 .

1.2 Summary of the CEC' 17 Test Suite

Table I. Summary of the CEC'17 Test Functions

	No.	Functions	$F_{i} *=\mathrm{F}_{\mathrm{i}}(\mathrm{X} *)$
Unimodal Functions	1	Shifted and Rotated Bent Cigar Function	100
	2	Shifted and Rotated Zakharov Function	200
Simple Multimodal Functions	3	Shifted and Rotated Rosenbrock’s Function	300
	4	Shifted and Rotated Rastrigin's Function	400
	5	Shifted and Rotated Expanded Scaffer's F6 Function	500
	6	Shifted and Rotated Lunacek Bi_Rastrigin Function	600
	7	Shifted and Rotated Non-Continuous Rastrigin's Function	700
	8	Shifted and Rotated Levy Function	800
	9	Shifted and Rotated Schwefel's Function	900
Hybrid Functions	10	Hybrid Function $1(N=3)$	1000
	11	Hybrid Function 2 ($N=3$)	1100
	12	Hybrid Function $3(N=3)$	1200
	13	Hybrid Function $4(N=4)$	1300
	14	Hybrid Function $5(N=4)$	1400
	15	Hybrid Function $6(N=4)$	1500
	16	Hybrid Function 6 ($N=5$)	1600
	17	Hybrid Function $6(N=5)$	1700
	18	Hybrid Function 6 ($N=5$)	1800
	19	Hybrid Function 6 ($N=6$)	1900
Composition Functions	20	Composition Function $1(N=3)$	2000
	21	Composition Function 2 ($N=3$)	2100
	22	Composition Function 3 ($N=4$)	2200
	23	Composition Function 4 ($N=4$)	2300
	24	Composition Function 5 ($N=5$)	2400
	25	Composition Function 6 ($N=5$)	2500
	26	Composition Function 7 ($N=6$)	2600
	27	Composition Function 8 ($N=6$)	2700
	28	Composition Function $9(N=3)$	2800
	29	Composition Function $10(N=3)$	2900
Search Range: [-100,100] ${ }^{\text {D }}$			

*Please Note: These problems should be treated as black-box problems. The explicit equations of the problems are not to be used.

1.3 Definitions of the Basic Functions

1) Bent Cigar Function

$$
\begin{equation*}
f_{1}(\boldsymbol{x})=x_{1}^{2}+10^{6} \sum_{i=2}^{D} x_{i}^{2} \tag{1}
\end{equation*}
$$

2) Zakharov Function

$$
\begin{equation*}
f_{3}(\boldsymbol{x})=\sum_{i=1}^{D} x_{i}^{2}+\left(\sum_{i=1}^{D} 0.5 x_{i}\right)^{2}+\left(\sum_{i=1}^{D} 0.5 x_{i}\right)^{4} \tag{2}
\end{equation*}
$$

3) Rosenbrock's Function

$$
\begin{equation*}
f_{4}(\boldsymbol{x})=\sum_{i=1}^{D-1}\left(100\left(x_{i}^{2}-x_{i+1}\right)^{2}+\left(x_{i}-1\right)^{2}\right) \tag{3}
\end{equation*}
$$

4) Rastrigin's Function

$$
\begin{equation*}
f_{5}(\boldsymbol{x})=\sum_{i=1}^{D}\left(x_{i}^{2}-10 \cos \left(2 \pi x_{i}\right)+10\right) \tag{4}
\end{equation*}
$$

5) Expanded Schaffer's F6 Function

$$
\begin{gather*}
\text { Schaffer's F6 Function: } g(x, y)=0.5+\frac{\left(\sin ^{2}\left(\sqrt{x^{2}+y^{2}}\right)-0.5\right)}{\left(1+0.001\left(x^{2}+y^{2}\right)\right)^{2}} \\
f_{6}(\boldsymbol{x})=g\left(x_{1}, x_{2}\right)+g\left(x_{2}, x_{3}\right)+\ldots+g\left(x_{D-1}, x_{D}\right)+g\left(x_{D}, x_{1}\right) \tag{5}
\end{gather*}
$$

6) Lunacek bi-Rastrigin Function

$$
\begin{align*}
f_{7}(x)= & \min \left(\sum_{i=1}^{D}\left(x_{i}-\mu_{0}\right)^{2}, d D+s \sum_{i=1}^{D}\left(x_{i}-\mu_{1}\right)^{2}\right)+10\left(D-\sum_{i=1}^{D} \cos \left(2 \pi z_{i}\right)\right) \\
& \mu_{0}=2.5, \mu_{1}=-\sqrt{\frac{\mu_{0}^{2}-d}{s}}, s=1-\frac{1}{2 \sqrt{D+20}-8.2}, d=1 \\
y & =\frac{10(\boldsymbol{x}-\boldsymbol{o})}{100}, x_{i}=2 \operatorname{sign}\left(x_{i}^{*}\right) y_{i}+\mu_{0}, \text { for } i=1,2, \ldots, D \\
& z=\Lambda^{100}\left(\hat{\boldsymbol{x}}-\mu_{0}\right) \tag{6}
\end{align*}
$$

7) Non-continuous Rotated Rastrigin's Function

$$
\begin{align*}
& f_{8}(x)=\sum_{i=1}^{D}\left(z_{i}^{2}-10 \cos \left(2 \pi z_{i}\right)+10\right)+f_{13} * \\
& \bar{x}=\mathbf{M}_{1} \frac{5.12(x-o)}{100}, y_{i}=\left\{\begin{array}{cl}
x_{i} & \text { if }\left|x_{i}\right| \leq 0.5 \\
\operatorname{round}\left(2 x_{i}\right) / 2 & \text { if }\left|x_{i}\right|>0.5
\end{array} \text { for } i=1,2, \ldots, D\right. \tag{7}\\
& z=\mathbf{M}_{1} \Lambda^{10} \mathbf{M}_{2} T_{\text {asy }}^{0.2}\left(T_{o s z}(y)\right)
\end{align*}
$$

Where Λ^{α} : a diagonal matrix in D dimensions with the $i^{\text {th }}$ diagonal element as $\lambda_{i i}=\alpha^{\frac{i-1}{2(D-1)}}$, $i=1,2, \ldots, D$.
$T_{\text {asy }}^{\beta}$: if $x_{i}>0, x_{i}=x_{i}^{1+\beta \frac{i-1}{D-1} \sqrt{x_{i}}}$, for $i=1, \ldots, D$
$T_{\text {osz: }}$ for $x_{i}=\operatorname{sign}\left(x_{i}\right) \exp \left(\hat{x}_{i}+0.049\left(\sin \left(c_{1} \hat{x}_{i}\right)+\sin \left(c_{2} \hat{x}_{i}\right)\right)\right)$, for $i=1$ and $D^{[4]}$
where $\hat{x}_{i}=\left\{\begin{array}{cc}\log \left(\left|x_{i}\right|\right) & \text { if } x_{i} \neq 0 \\ 0 & \text { otherwise }\end{array}, \operatorname{sign}\left(x_{i}\right)=\left\{\begin{array}{cc}-1 & \text { if } x_{i}<0 \\ 0 & \text { if } x_{i}=0 \\ 1 & \text { otherwise }\end{array}\right.\right.$
$c_{1}=\left\{\begin{array}{cc}10 & \text { if } x_{i}>0 \\ 5.5 & \text { otherwise }\end{array}\right.$, and $c_{2}=\left\{\begin{array}{cc}7.9 & \text { if } x_{i}>0 \\ 3.1 & \text { otherwise }\end{array}\right.$

8) Levy Function

$$
\begin{align*}
& f_{9}(\boldsymbol{x})=\sin ^{2}\left(\pi w_{1}\right)+\sum_{i=1}^{D-1}\left(w_{i}-1\right)^{2}\left[1+10 \sin ^{2}\left(\pi w_{i}+1\right)\right]+\left(w_{D}-1\right)^{2}\left[1+\sin ^{2}\left(2 \pi w_{D}\right)\right] \\
& \text { Where } w_{i}=1+\frac{x_{i}-1}{4}, \forall i=1, \ldots, D \tag{8}
\end{align*}
$$

9) Modified Schwefel's Function

$$
\begin{align*}
& f_{10}(\boldsymbol{x})=418.9829 \times D-\sum_{i=1}^{D} g\left(z_{i}\right), \\
& g\left(z_{i}\right)= \begin{cases}z_{i}=x_{i}+4.209687462275036 \mathrm{e}+002 \\
\left(500-\bmod \left(\left|z_{i}\right|^{1 / 2}\right)\right. & \text { if } \left.\left.\left|z_{i}\right| \leq 500\right)\right) \sin \left(\sqrt{\left|500-\bmod \left(z_{i}, 500\right)\right|}\right)-\frac{\left(z_{i}-500\right)^{2}}{10000 D} \\
\text { if } z_{i}>500 \\
\left(\bmod \left(\left|z_{i}\right|, 500\right)-500\right) \sin \left(\sqrt{\left|\bmod \left(\left|z_{i}\right|, 500\right)-500\right|}\right)-\frac{\left(z_{i}+500\right)^{2}}{10000 D} & \text { if } z_{i}<-500\end{cases} \tag{9}
\end{align*}
$$

10) High Conditioned Elliptic Function

$$
\begin{equation*}
f_{11}(\boldsymbol{x})=\sum_{i=1}^{D}\left(10^{6}\right)^{\frac{i-1}{D-1}} \boldsymbol{x}_{i}^{2} \tag{10}
\end{equation*}
$$

11) Discus Function

$$
\begin{equation*}
f_{12}(\boldsymbol{x})=10^{6} x_{1}^{2}+\sum_{i=2}^{D} x_{i}^{2} \tag{11}
\end{equation*}
$$

12) Ackley's Function

$$
\begin{equation*}
f_{13}(\boldsymbol{x})=-20 \exp \left(-0.2 \sqrt{\frac{1}{D} \sum_{i=1}^{D} x_{i}^{2}}\right)-\exp \left(\frac{1}{D} \sum_{i=1}^{D} \cos \left(2 \pi x_{i}\right)\right)+20+\mathrm{e} \tag{12}
\end{equation*}
$$

13) Weierstrass Function

$$
\begin{align*}
& f_{14}(\boldsymbol{x})=\sum_{i=1}^{D}\left(\sum_{k=0}^{k \max }\left[a^{k} \cos \left(2 \pi b^{k}\left(x_{i}+0.5\right)\right)\right]\right)-D \sum_{k=0}^{k \max }\left[a^{k} \cos \left(2 \pi b^{k} \cdot 0.5\right)\right] \tag{13}\\
& a=0.5, b=3, k \max =20
\end{align*}
$$

14) Griewank's Function

$$
\begin{equation*}
f_{15}(\boldsymbol{x})=\sum_{i=1}^{D} \frac{x_{i}^{2}}{4000}-\prod_{i=1}^{D} \cos \left(\frac{x_{i}}{\sqrt{i}}\right)+1 \tag{14}
\end{equation*}
$$

15) Katsuura Function

$$
\begin{equation*}
f_{16}(\boldsymbol{x})=\frac{10}{D^{2}} \prod_{i=1}^{D}\left(1+i \sum_{j=1}^{32} \frac{\left|2^{j} x_{i}-\operatorname{round}\left(2^{j} x_{i}\right)\right|}{2^{j}}\right)^{\frac{10}{D^{12}}}-\frac{10}{D^{2}} \tag{15}
\end{equation*}
$$

16) HappyCat Function

$$
\begin{equation*}
f_{17}(\boldsymbol{x})=\left|\sum_{i=1}^{D} x_{i}^{2}-D\right|^{1 / 4}+\left(0.5 \sum_{i=1}^{D} x_{i}^{2}+\sum_{i=1}^{D} x_{i}\right) / D+0.5 \tag{16}
\end{equation*}
$$

17) HGBat Function

$$
\begin{equation*}
f_{18}(\boldsymbol{x})=\left|\left(\sum_{i=1}^{D} x_{i}^{2}\right)^{2}-\left(\sum_{i=1}^{D} x_{i}\right)^{2}\right|^{1 / 2}+\left(0.5 \sum_{i=1}^{D} x_{i}^{2}+\sum_{i=1}^{D} x_{i}\right) / D+0.5 \tag{17}
\end{equation*}
$$

18) Expanded Griewank's plus Rosenbrock's Function

$$
\begin{equation*}
f_{19}(\boldsymbol{x})=f_{7}\left(f_{4}\left(x_{1}, x_{2}\right)\right)+f_{7}\left(f_{4}\left(x_{2}, x_{3}\right)\right)+\ldots+f_{7}\left(f_{4}\left(x_{D-1}, x_{D}\right)\right)+f_{7}\left(f_{4}\left(x_{D}, x_{1}\right)\right) \tag{18}
\end{equation*}
$$

19) Schaffer's F7 Function

$$
\begin{equation*}
f_{20}(\boldsymbol{x})=\left[\frac{1}{D-1} \sum_{i=1}^{D-1}\left(\sqrt{s_{i}} \cdot\left(\sin \left(50.0 s_{i}^{0.2}\right)+1\right)\right)\right]^{2}, s_{i}=\sqrt{x_{i}^{2}+x_{i+1}^{2}} \tag{19}
\end{equation*}
$$

1.4 Definitions of the CEC'17 Test Suite

A. Unimodal Functions:

1) Shifted and Rotated Bent Cigar

$$
\begin{equation*}
F_{1}(\boldsymbol{x})=f_{1}\left(\mathbf{M}\left(\boldsymbol{x}-\boldsymbol{o}_{1}\right)\right)+F_{1} * \tag{20}
\end{equation*}
$$

Figure 1. 3-D map for 2-D function

Properties:

$>$ Unimodal
$>$ Non-separable
$>$ Smooth but narrow ridge
2) Shifted and Rotated Zakharov Function

$$
\begin{equation*}
F_{3}(\boldsymbol{x})=f_{3}\left(\mathbf{M}\left(\boldsymbol{x}-\boldsymbol{o}_{3}\right)\right)+F_{3} * \tag{21}
\end{equation*}
$$

Figure 3. 3-D map for 2-D function

Properties:

$>$ Unimodal
> Non-separable

B. Multimodal Functions

3) Shifted and Rotated Rosenbrock's Function

$$
\begin{equation*}
F_{4}(\boldsymbol{x})=f_{4}\left(\mathbf{M}\left(\frac{2.048\left(\boldsymbol{x}-\boldsymbol{o}_{4}\right)}{100}\right)+1\right)+F_{4} * \tag{22}
\end{equation*}
$$

Figure 4(a). 3-D map for 2-D function

Figure 4(b). Contour map for 2-D function

Properties:

> Multi-modal
$>$ Non-separable
> Local optima's number is huge
4) Shifted and Rotated Rastrigin's Function

$$
\begin{equation*}
F_{5}(\boldsymbol{x})=f_{5}\left(\mathbf{M}\left(\boldsymbol{x}-\boldsymbol{o}_{5}\right)\right)+F_{5} * \tag{23}
\end{equation*}
$$

Figure 5(a). 3-D map for 2-D function

Figure 5(b).Contour map for 2-D function

Properties:

> Multi-modal
$>$ Non-separable
$>$ Local optima's number is huge and second better local optimum is far from the global optimum.
5) Shifted and Rotated Schaffer's F7 Function

$$
\begin{equation*}
F_{6}(\boldsymbol{x})=f_{20}\left(\mathbf{M}\left(\frac{0.5\left(\boldsymbol{x}-\boldsymbol{o}_{6}\right)}{100}\right)\right)+F_{6} * \tag{24}
\end{equation*}
$$

Figure 6(a). 3-D map for 2-D function

Figure 6(b).Contour map for 2-D function

Properties:

> Multi-modal
$>$ Non-separable
$>$ Asymmetrical
$>$ Local optima's number is huge
6) Shifted and Rotated Lunacek Bi-Rastrigin's Function

$$
\begin{equation*}
F_{7}(\boldsymbol{x})=f_{7}\left(\mathbf{M}\left(\frac{600\left(\boldsymbol{x}-\boldsymbol{o}_{7}\right)}{100}\right)\right)+F_{7} * \tag{25}
\end{equation*}
$$

Figure 7(a). 3-D map for 2-D function

Figure 7(b).Contour map for 2-D function

Properties:

> Multi-modal
$>$ Non-separable
$>$ Asymmetrical
> Continuous everywhere yet differentiable nowhere
7) Shifted and Rotated Non-Continuous Rastrigin's Function

$$
\begin{equation*}
F_{8}(\boldsymbol{x})=f_{8}\left(\frac{5.12\left(\boldsymbol{x}-\boldsymbol{o}_{8}\right)}{100}\right)+F_{8} * \tag{26}
\end{equation*}
$$

Figure 8(a). 3-D map for 2-D function

Figure 8(b). Contour map for 2-D function

Properties:

$>$ Multi-modal
$>$ Non-separable
$>$ Asymmetrical
$>$ Local optima's number is huge
8) Shifted and Rotated Levy Function

$$
\begin{equation*}
F_{9}(\boldsymbol{x})=f_{9}\left(\mathbf{M}\left(\frac{5.12\left(\boldsymbol{x}-\boldsymbol{o}_{9}\right)}{100}\right)\right)+F_{9} * \tag{27}
\end{equation*}
$$

Figure 9(a). 3-D map for 2-D function

Figure 9(b).Contour map for 2-D function

Properties:

$>$ Multi-modal
$>$ Non-separable
$>$ Local optima's number is huge
9) Shifted and Rotated Schwefel's Function

$$
\begin{equation*}
F_{10}(\boldsymbol{x})=f_{10}\left(\frac{1000\left(\boldsymbol{x}-\boldsymbol{o}_{10}\right)}{100}\right)+F_{10} * \tag{28}
\end{equation*}
$$

Figure 10(a). 3-D map for 2-D function

Figure 10(b).Contour map for 2-D function

Properties:

$>$ Multi-modal
$>$ Non-Separable
$>$ Local optima's number is huge and second better local optimum is far from the global optimum.

C. Hybrid Functions

Considering that in the real-world optimization problems, different subcomponents of the variables may have different properties ${ }^{[5]}$. In this set of hybrid functions, the variables are randomly divided into some subcomponents and then different basic functions are used for different subcomponents.

$$
\begin{equation*}
F(\boldsymbol{x})=g_{1}\left(\mathbf{M}_{1} z_{1}\right)+g_{2}\left(\mathbf{M}_{2} z_{2}\right)+\ldots+g_{N}\left(\mathbf{M}_{N} z_{N}\right)+F^{*}(\boldsymbol{x}) \tag{29}
\end{equation*}
$$

$F(x)$: hybrid function
$g_{i}(\boldsymbol{x})$: $\quad i^{\text {th }}$ basic function used to construct the hybrid function
$N: \quad$ number of basic functions
$z=\left[z_{1}, z_{2}, \ldots, z_{N}\right]$
$z_{1}=\left[\boldsymbol{y}_{S_{1}}, \boldsymbol{y}_{S_{2}}, \ldots, \boldsymbol{y}_{S_{n_{1}}}\right], \boldsymbol{z}_{2}=\left[\boldsymbol{y}_{S_{m_{1+1}}}, \boldsymbol{y}_{S_{m_{1+2}}}, \ldots, \boldsymbol{y}_{S_{m_{1+2}}}\right], \ldots, \boldsymbol{z}_{N}=\left[\boldsymbol{y}_{\substack{S_{N-1}-1 \\ i=1}}, \boldsymbol{y}_{\substack{n_{i+1} \\ S_{2-1} n_{t+2} \\ k=1}}, \ldots, \boldsymbol{y}_{S_{D}}\right]$
$\boldsymbol{y}=\boldsymbol{x}-\boldsymbol{o}_{i}, S=\operatorname{randperm}(1: D)$
$p_{i}: \quad$ used to control the percentage of $g_{i}(\boldsymbol{x})$
n_{i} : \quad dimension for each basic function $\sum_{i=1}^{N} n_{i}=D$
$n_{1}=\left\lceil p_{1} D\right\rceil, n_{2}=\left\lceil p_{2} D\right\rceil, \ldots, n_{N-1}=\left\lceil p_{N-1} D\right\rceil, n_{N}=D-\sum_{i=1}^{N-1} n_{i}$

Properties:

$>$ Multi-modal or Unimodal, depending on the basic function
$>$ Non-separable subcomponents
$>$ Different properties for different variables subcomponents

10) Hybrid Function 1

$N=3$
$p=[0.2,0.4,0.4]$
g_{1} : Zakharov Function f_{3}
g_{2} : Rosenbrock Function f_{4}
g_{3} : Rastrigin's Function f_{5}

11) Hybrid Function 2

$N=3$
$p=[0.3,0.3,0.4]$
g_{1} : High Conditioned Elliptic Function f_{11}
g_{2} : Modified Schwefel's Function f_{10}
g_{3} : Bent Cigar Function f_{1}

12) Hybrid Function 3

$N=3$
$p=[0.3,0.3,0.4]$
g_{1} : Bent Cigar Function f_{1}
g_{2} : Rosenbrock Function f_{4}
g_{3} : Lunache Bi-Rastrigin Function f_{7}

13) Hybrid Function 4

$N=4$
$p=[0.2,0.2,0.2,0.4]$
g_{1} : High Conditioned Elliptic Function f_{11}
g_{2} : Ackley's Function f_{13}
g_{3} : Schaffer's F7 Function f_{20}
g_{4} : Rastrigin's Function f_{5}

14) Hybrid Function 5

$N=4$
$p=[0.2,0.2,0.3,0.3]$
g_{1} : Bent Cigar Function f_{1}
g_{2} : HGBat Function f_{18}
g_{3} : Rastrigin's Function f_{5}
g_{4} : Rosenbrock's Function f_{4}

15) Hybrid Function 6

$N=4$
$p=[0.2,0.2,0.3,0.3]$
g_{1} : Expanded Schaffer F6 Function f_{6}
g_{2} : HGBat Function f_{18}
g_{3} : Rosenbrock's Function f_{4}
g4: Modified Schwefel's Function f_{10}

16) Hybrid Function 7

$N=5$
$p=[0.1,0.2,0.2,0.2,0.3]$
g_{1} : Katsuura Function f_{16}
g_{2} : Ackley's Function f_{13}
g_{3} : Expanded Griewank's plus Rosenbrock's Function f_{19}
g_{4} : Modified Schwefel's Function f_{10}
g_{4} : Rastrigin's Function f_{5}

17) Hybrid Function 8

$N=5$
$p=[0.2,0.2,0.2,0.2,0.2]$
g_{1} : High Conditioned Elliptic Function f_{1}
g_{2} : Ackley's Function f_{13}
g_{3} : Rastrigin's Function f_{5}
g_{4} : HGBat Function f_{18}
g_{4} : Discus Function f_{12}

18) Hybrid Function 9

$N=5$
$p=[0.2,0.2,0.2,0.2,0.2]$
g_{1} : Bent Cigar Function f_{1}
g_{2} : Rastrigin's Function f_{5}
g_{3} : Expanded Griewank's plus Rosenbrock's Function f_{19}
g4: Weierstrass Function f_{14}
g_{5} : Expanded Schaffer's F6 Function f_{6}

19) Hybrid Function 10

$N=6$
$p=[0.1,0.1,0.2,0.2,0.2,0.2]$
g_{1} : Happycat Function f_{17}
g_{2} : Katsuura Function f_{16}
g_{3} : Ackley's Function f_{13}
g4: Rastrigin's Function f_{5}
g_{5} : Modified Schwefel's Function f_{10}
g_{6} : Schaffer's F7 Function f_{20}

D. Composition Functions

$$
\begin{equation*}
F(\boldsymbol{x})=\sum_{i=1}^{N}\left\{\omega_{i} *\left[\lambda_{i} g_{i}(\boldsymbol{x})+\operatorname{bias}_{i}\right]\right\}+F^{*} \tag{30}
\end{equation*}
$$

$F(x)$: composition function
$g_{i}(\boldsymbol{x})$: $\quad i^{\text {th }}$ basic function used to construct the composition function
N : number of basic functions
o_{i} : new shifted optimum position for each $g_{\mathrm{i}}(\boldsymbol{x})$, define the global and local optima's position
biasi: defines which optimum is global optimum
σ_{i} : used to control each $g_{i}(\boldsymbol{x})$'s coverage range, a small σ_{i} give a narrow range for that $g_{i}(x)$
$\lambda_{i}: \quad$ used to control each $g_{i}(\boldsymbol{x})$'s height
w_{i} : weight value for each $g_{i}(\boldsymbol{x})$, calculated as below:

$$
\begin{equation*}
w_{i}=\frac{1}{\sqrt{\sum_{j=1}^{D}\left(x_{j}-o_{i j}\right)^{2}}} \exp \left(-\frac{\sum_{j=1}^{D}\left(x_{j}-o_{i j}\right)^{2}}{2 D \sigma_{i}^{2}}\right) \tag{31}
\end{equation*}
$$

Then normalize the weight $\omega_{i}=w_{i} / \sum_{i=1}^{n} w_{i}$

So when $\boldsymbol{x}=\boldsymbol{o}_{i}, \omega_{j}=\left\{\begin{array}{ll}1 & j=i \\ 0 & j \neq i\end{array}\right.$ for $j=1,2, \ldots, N, f(x)=$ bias $_{i}+f *$
The local optimum which has the smallest bias value is the global optimum. The composition function merges the properties of the sub-functions better and maintains continuity around the global/local optima.
Functions $F i^{\prime}=F i-F_{i}{ }^{*}$ are used as g_{i}. In this way, the function values of global optima of g_{i} are equal to 0 for all composition functions in this report.
In CEC'14, the hybrid functions are also used as the basic functions for composition functions (Composition Function 7 and Composition Function 8). With hybrid functions as the basic functions, the composition function can have different properties for different variables subcomponents.
Please Note: All the basic functions that have been used in composition functions are shifted and rotated functions.

20) Composition Function 1

$N=3, \quad \sigma=[10,20,30]$
$\lambda=[1,1 \mathrm{e}-6,1]$
bias $=[0,100,200]$
$g_{1:}$ Rosenbrock's Function $F_{4}{ }^{\prime}$
g_{2} : High Conditioned Elliptic Function F_{11},
g_{3} Rastrigin's Function F_{4} '

Figure 11(a). 3-D map for 2-D function

Figure 11 (b).Contour map for 2- D function

Properties:

$>$ Multi-modal
$>$ Non-separable
$>$ Asymmetrical
$>$ Different properties around different local optima

21) Composition Function 2

$N=3$
$\sigma=[10,20,30]$
$\lambda=[1,10,1]$
bias $=[0,100,200]$
$g_{1:}$ Rastrigin's Function F_{5},
g_{2} : Griewank's Function F_{15} '
g_{3} Modifed Schwefel's Function F_{10},

Figure 12(a). 3-D map for 2-D function

Figure 12(b). Contour map for 2-D function

Properties:

$>$ Multi-modal
$>$ Non-separable
$>$ Asymmetrical
$>$ Different properties around different local optima

22) Composition Function 3

$N=4$
$\sigma=[10,20,30,40]$
$\lambda=[1,10,1,1]$
bias $=[0,100,200,300]$
$g_{1:}$ Rosenbrock's Function F_{4},
$g_{2:} \quad$ Ackley's Function F_{13} '
$g_{3:} \quad$ Modified Schwefel's Function F_{10},
g_{4} : Rastrigin's Function F_{5},

Figure 13(a). 3-D map for 2-D function

Figure 13(b). Contour map for 2-D function

Properties:

$>$ Multi-modal
> Non-separable
$>$ Asymmetrical
$>$ Different properties around different local optima

23) Composition Function 4

$N=4$
$\sigma=[10,20,30,40]$
$\lambda=[10,1 \mathrm{e}-6,10,1]$
bias $=[0,100,200,300]$
g_{1} : Ackley's Function F_{13},
$g_{2:}$ High Conditioned Elliptic Function F_{11},
$g_{3:}$ Girewank Function F_{15} '
g4: Rastrigin's Function F_{5},

Figure 14(a). 3-D map for 2-D function

Figure 14(b). Contour map for 2-D function

Properties:

$>$ Multi-modal
$>$ Non-separable
$>$ Asymmetrical
$>$ Different properties around different local optima

24) Composition Function 5

$N=5$
$\sigma=[10,20,30,40,50]$
$\lambda=[10,1,10,1 \mathrm{e}-6,1]$
bias $=[0,100,200,300,400]$
g_{1} : Rastrigin's Function F_{5} '
$g_{2:}$ Happycat Function F_{17} '
$g_{3:}$ Ackley Function F_{13},
g4: Discus Function F_{12} '
g_{5} : Rosenbrock's Function F_{4},

Figure 15(a). 3-D map for 2-D function

Figure 15(b). Contour map for 2-D function

Properties:

$>$ Multi-modal
$>$ Non-separable
$>$ Asymmetrical
$>$ Different properties around different local optima

25) Composition Function 6

$N=5$
$\sigma=[10,20,20,30,40]$
$\lambda=[1 \mathrm{e}-26,10,1 \mathrm{e}-6,10,5 \mathrm{e}-4]$
bias $=[0,100,200,300,400]$
$g_{1:}$ Expanded Scaffer's F6 Function F_{6},
g_{2} : Modified Schwefel's Function F_{10} '
$g_{3:}$ Griewank's Function F_{15} '
g_{4} Rosenbrock's Function F_{4},
$g_{5:}$ Rastrigin's Function F_{5},

Figure 16(a). 3-D map for 2-D function

Figure 16(b). Contour map for 2-D function

Properties:

$>$ Multi-modal
$>$ Non-separable
$>$ Asymmetrical
$>$ Different properties around different local optima

26) Composition Function 7

$N=6$
$\sigma=[10,20,30,40,50,60]$
$\lambda=[10,10,2.5,1 \mathrm{e}-26,1 \mathrm{e}-6,5 \mathrm{e}-4]$
bias $=[0,100,200,300,400,500]$
$g_{1:}$ HGBat Function F_{18},
g_{2} : Rastrigin's Function F_{5},
$g_{3:}$ Modified Schwefel's Function F_{10},
g4: Bent-Cigar Function F_{11},
g4: High Conditioned Elliptic Function F_{11},
$g_{5:}$ Expanded Scaffer's F6 Function F_{6},

Figure 17(a). 3-D map for 2-D function

Figure 17(b). Contour map for 2-D function

Properties:

$>$ Multi-modal
$>$ Non-separable
$>$ Asymmetrical
$>$ Different properties around different local optima

27) Composition Function 8

$N=6$
$\sigma=[10,20,30,40,50,60]$
$\lambda=[10,10,1 \mathrm{e}-6,1,1,5 \mathrm{e}-4]$
bias $=[0,100,200,300,400,500]$
g_{1} : Ackley's Function F_{13} '
g_{2} : Griewank's Function F_{15} '
$g_{3 \text { : }}$ Discus Function F_{12},
g_{4} Rosenbrock's Function F_{4},
g4: HappyCat Function F_{17} '
$g_{5:}$ Expanded Scaffer's F6 Function F_{6},

Figure 18(a). 3-D map for 2-D function

Figure 18(b). Contour map for 2-D function

Properties:

$>$ Multi-modal
$>$ Non-separable
$>$ Asymmetrical
$>$ Different properties around different local optima

28) Composition Function 10

$N=3$
$\sigma=[10,30,50]$
$\lambda=[1,1,1]$
bias $=[0,100,200]$
g_{1} : Hybrid Function $5 F_{5}$,
g_{2} : Hybrid Function $6 F_{6}$,
$g_{3:} \quad$ Hybrid Function $7 F_{7}$ '

Properties:

$>$ Multi-modal
> Non-separable
$>$ Asymmetrical
$>$ Different properties around different local optima
$>$ Different properties for different variables subcomponents

29) Composition Function 9

$N=3$
$\sigma=[10,30,50]$
$\lambda=[1,1,1]$
bias $=[0,100,200]$
$g_{1:}$ Hybrid Function $5 F_{5}$,
g_{2} : Hybrid Function $8 F_{8}$,
$g_{3:}$ Hybrid Function $9 F_{9}$,

Properties:

$>$ Multi-modal
$>$ Non-separable
$>$ Asymmetrical
$>$ Different properties around different local optima
$>$ Different properties for different variables subcomponents

2. Evaluation Criteria

2.1 Experimental Setting

Problems: 30 minimization problems
Dimensions: $D=10,30,50,100$ (Results only for 10D and 30D are acceptable for the initial submission; but 50D and 100D should be included in the final version)

Runs / problem: 51 (Do not run many 51 runs to pick the best run)
MaxFES: $10000^{*} D$ (Max_FES for 10D $=100000$; for 30D $=300000$; for 50D $=500000$; for $100 \mathrm{D}=1000000$)

Search Range: $[-100,100]^{D}$
Initialization: Uniform random initialization within the search space. Random seed is based on time, Matlab users can use rand ('state', sum(100*clock)).

Global Optimum: All problems have the global optimum within the given bounds and there is no need to perform search outside of the given bounds for these problems. $F_{i}\left(\boldsymbol{x}^{*}\right)=F_{i}\left(\boldsymbol{o}_{i}\right)=F_{i}{ }^{*}$

Termination: Terminate when reaching MaxFES or the error value is smaller than 10^{-8}.

2.2 Results Record

1) Record function error value $\left(F_{i}(x)-F_{i}\left(x^{*}\right)\right)$ after $(0.01,0.02,0.03,0.05,0.1,0.2,0.3$, $0.4,0.5,0.6,0.7,0.8,0.9,1.0$)*MaxFES for each run.

In this case, $\mathbf{1 4}$ error values are recorded for each function for each run. Sort the error values achieved after MaxFES in 51 runs from the smallest (best) to the largest (worst)
and present the best, worst, mean, median and standard variance values of function error values for the 51 runs.

Please Notice: Error value smaller than 10^{-8} will be taken as zero.

2.3 Performance Measure

a) The evaluation criteria will be divided into two parts:

1. 50% summation of mean error values of each problem for all dimensions as follows:

$$
S E=0.1 \times \sum_{i=1}^{29} e f_{10 D}+0.2 \times \sum_{i=1}^{29} e f_{30 D}+0.3 \times \sum_{i=1}^{29} e f_{50 D}+0.4 \times \sum_{i=1}^{29} e f_{100 D}
$$

where $e f$ is the mean error values for all the functions and $S E$ is the sum of errors and then find the score for this part as follows:

$$
\text { Score } 1=\left(1-\frac{S E-S E_{\min }}{S E}\right) \times 50
$$

where $S E_{\min }$ is the minimal sum of errors from all the algorithms.
b) 50% rank based for mean error values for each problem in each dimension as follows:

$$
S R=0.1 \times \sum_{i=1}^{29} \operatorname{rank}_{10 D}+0.2 \times \sum_{i=1}^{29} \operatorname{rank}_{30 D}+0.3 \times \sum_{i=1}^{29} \operatorname{rank}_{50 D}+0.4 \times \sum_{i=1}^{29} \operatorname{rank}_{100 D}
$$

where $S R$ is the sum of ranks then find the score for this part as follows:

$$
\text { Score } 2=\left(1-\frac{S R-S R_{\min }}{S R}\right) \times 50
$$

$S R_{\min }$ is the minimal sum of ranks from all the algorithms.
c) Combine the above two parts to find the final score as follows. Higher weight will be given for higher dimensions:

Score $=$ Score $1+$ Score 2

3. Algorithm Complexity

a) Run the test program below:

$$
x=0.55 ;
$$

for $i=1: 1000000$

$$
x=x+x ; x=x / 2 ; x=x^{*} x ; x=\operatorname{sqrt}(x) ; x=\log (x) ; x=\exp (x) ; x=x /(x+2) ;
$$

end
Computing time for the above $=T 0$;
b) Evaluate the computing time just for Function 18. For 200000 evaluations of a certain dimension D, it gives $T 1$;
c) The complete computing time for the algorithm with 200000 evaluations of the same D dimensional Function 18 is $T 2$.
d) Execute step c five times and get five $T 2$ values. $\hat{T} 2=\operatorname{Mean}(T 2)$

The complexity of the algorithm is reflected by: $\dot{T} 2, T 1, T 0$, and ($\dot{T} 2-T 1$)/T0
The algorithm complexities are calculated on 10, 30 and 50 dimensions, to show the algorithm complexity's relationship with dimension. Also provide sufficient details on the computing system and the programming language used. In step c , we execute the complete algorithm five times to accommodate variations in execution time due adaptive nature of some algorithms.

Please Note: Similar programming styles should be used for all T0, T1 and $\boldsymbol{T 2}$. (For example, if \boldsymbol{m} individuals are evaluated at the same time in the algorithm, the same style should be employed for calculating $T 1$; if parallel calculation is employed for calculating $\boldsymbol{T 2}$, the same way should be used for calculating $\boldsymbol{T 0}$ and $\boldsymbol{T 1}$. In other word, the complexity calculation should be fair.)

4. Parameters

Participants must not search for a distinct set of parameters for each problem/dimension/etc.
Please provide details on the following whenever applicable:
a) All parameters to be adjusted
b) Corresponding dynamic ranges
c) Guidelines on how to adjust the parameters
d) Estimated cost of parameter tuning in terms of number of FEs
e) Actual parameter values used.

5. Encoding

If the algorithm requires encoding, then the encoding scheme should be independent of the specific problems and governed by generic factors such as the search ranges.

6. Results Format

The participants are required to send the final results as the following format to the organizers and the organizers will present an overall analysis and comparison based on these results.

Create one txt document with the name "AlgorithmName_FunctionNo._D.txt" for each test function and for each dimension.

For example, PSO results for test function 5 and $\mathrm{D}=30$, the file name should be "PSO_5_30.txt".

Then save the results matrix (the gray shadowing part) as Table II in the file:

Table II. Information Matrix for D Dimensional Function X				
***.txt	Run 1	Run 2	\ldots	Run 51
Function error values when FES=0.01*MaxFES				
Function error values when FES=0.02*MaxFES				
Function error values when FES=0.03*MaxFES				
Function error values when FES=0.05*MaxFES				
$\ldots \ldots$				
Function error values when FES=0.9*MaxFES				
Function error values when FES=MaxFES				

Thus $30 * \mathbf{4}$ (10D, 30D, 50D and 100D) files should be zipped and sent to the organizers. Each file contains a 14*51 matrix.

Notice: All participants are allowed to improve their algorithms further after submitting the initial version of their papers to CEC2014. And they are required to submit their results in the introduced format to the organizers after submitting the final version of paper as soon as possible.

6.1 Results Template

Language: Matlab 2008a
Algorithm: Particle Swarm Optimizer (PSO)

Results

Notice:
Considering the length limit of the paper, only Error Values Achieved with MaxFES are need to be listed. While the authors are required to send all results ($30 * 4$ files described in section 2.2) to the organizers for a better comparison among the algorithms.

Table III. Results for 10D

Func.	Best	Worst	Median	Mean	Std
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					

Table IV. Results for 30D

Table V. Results for 50D

Table VI. Results for 100D

Algorithm Complexity

Table VII. Computational Complexity

	$T 0$	$T 1$	$\grave{T} 2$
$\grave{T} 2-T 1) / T 0$			
$D=10$			
$D=30$			
$D=50$			

Parameters

a) All parameters to be adjusted
b) Corresponding dynamic ranges
c) Guidelines on how to adjust the parameters
d) Estimated cost of parameter tuning in terms of number of FES
e) Actual parameter values used.

References

[1] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger \& S. Tiwari, "Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization," Technical Report, Nanyang Technological University, Singapore, May 2005 and KanGAL Report \#2005005, IIT Kanpur, India, 2005.
[2] J. J. Liang, B. Y. Qu, P. N. Suganthan, Alfredo G. Hernández-Díaz, "Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session and Competition on Real-Parameter Optimization", Technical Report 201212, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, January 2013.
[3] J. J. Liang, B. Y. Qu, P. N. Suganthan, "Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Real-Parameter Optimization", Technical Report 201212, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, January 2014.
[4] Joaqu'ı Derrac, Salvador Garcia, Sheldon Hui, Francisco Herrera, Ponnuthurai N. Suganthan, "Statistical analysis of convergence performance throughout the search: A case study with SaDE-MMTS and Sa-EPSDE-MMTS," accepted by Symp. DE 2013, IEEE SSCI 2013, 2012.
[5] Xiaodong Li, Ke Tang, Mohammad N. Omidvar, Zhenyu Yang, and Kai Qin, Benchmark Functions for the CEC'2013 Special Session and Competition on Large-Scale Global Optimization, Technical Report, 2013.

