

Problem Definitions and Evaluation Criteria for the CEC 2021

Special Session and Competition on Single Objective Bound

Constrained Numerical Optimization

Ali Wagdy Mohamed1,2, Anas A Hadi3, Ali Khater Mohamed4, Prachi Agrawal5,

Abhishek Kumar6, P. N. Suganthan7

1Operations Research Department, Faculty of Graduate Studies for Statistical Research, Cairo University, Giza

12613, Egypt.

2Wireless Intelligent Networks Centre (WINC), School of Engineering and Applied Sciences, Nile University,

Giza, Egypt.

3College of Computing and Information Technology, King Abdul-Aziz University P. O. Box 80200,

Jeddah 21589, Saudi Arabia

4Faculty of Computer Science, October University for Modern Sciences and Arts (MSA), 6th October city, Giza

12451, Egypt

 5Department of Mathematics and Scientific Computing, National Institute of Technology Hamirpur, Himachal

Pradesh 177005 India

6Department of Electrical Engineering, Indian Institute of Technology (BHU), Varanasi, Varanasi, 221005,

India

7School of Electrical Electronic Engineering, Nanyang Technological University, Singapore

aliwagdy@gmail.com, anas1401@gmail.com , akhater@msa.eun.eg, prachiagrawal202@gmail.com,

abhishek.kumar.eee13@iitbhu.ac.in, epnsugan@ntu.edu.sg

Technical Report

November 2020

mailto:aliwagdy@gmail.com
mailto:anas1401@gmail.com
mailto:akhater@msa.eun.eg
mailto:prachiagrawal202@gmail.com
mailto:epnsugan@ntu.edu.sg

Single objective optimization algorithms are the foundation upon which more complex methods, like

multi-objective, niching and constrained optimization algorithms, are built. Consequently,

improvements to single objective optimization algorithms are important because they can impact other

domains as well. These algorithmic improvements depend in part on feedback from trials conducted

with single objective benchmark functions, which themselves are the elemental building blocks for

more complex tasks, like dynamic, niching, composition and computationally expensive problems. As

algorithms improve, ever more challenging functions must be developed. This interplay between

methods and problems drives progress, so we have developed the CEC’21 Special Session on Real-

Parameter Optimization to promote this symbiosis.

Improved methods and problems sometimes require updating traditional testing criteria. In recent

years, many novel optimization algorithms have been proposed to solve the bound-constrained, single

objective problems offered in the CEC’05[1], CEC’13[2], CEC’14[3], CEC’17[4] , and CEC’20[5] special

sessions on Real-Parameter Optimization. In this competition, the benchmark objective functions are

parameterized by including the operators such as bias, rotation, and translation. The main motive behind

the parameterization is to test the effect of all combinations of the operators on all benchmark functions.

Parametrized benchmarking is a step towards obtaining multi-faceted insight into algorithmic

performance and the optimization problems[6]. For this, 10 scalable benchmark problems are proposed

with these binary operators.

Participants are required to send their final results to the organizers in the format specified in this

technical report. Based on these results, organizers will present a comparative analysis that includes

statistical tests on convergence performance to compare algorithms with similar final solutions.

Participants may not explicitly use the equations of the test functions, e.g. to compute gradients. This

competition also excludes surrogate and meta-models. Papers on novel concepts that help us to

understand problem characteristics are also welcome. The C and MATLAB codes for CEC’21 test suite

can be downloaded from the website below:

https://github.com/P-N-Suganthan

1. Introduction to the CEC’21 Benchmark Suite

1.1. Some Definitions:

All test functions are minimization problems defined as follows:

 
T

1 2Min (), , , , x x Df x x x

D: number of dimensions.

 
T

1 1 2, , , i i i iDo o oo : the shifted global optimum (defined in “shift_data_x.txt”), which is randomly

distributed in [-80,80]D. All test functions are shifted to o and are scalable.

Search range: [-100,100]D. For convenience, the same search ranges are defined for all test functions.

Mi: rotation matrix. Different rotation matrix are assigned to each function and each basic function.

Considering that linkages seldom exists among all variables in real-world problems, CEC’20 randomly

divides variables into subcomponents. The rotation matrix for each set of subcomponents is generated

from standard normally distributed entries by Gram-Schmidt ortho-normalization with condition

number c that is equal to 1 or 2.

1.2. Summary of the CEC’21 Test Suite

 No. Functions Fi
* = Fi(x*)

Unimodal

Function
1 Shifted and Rotated Bent Cigar Function (CEC 2017[4] F1) 100

Basic

Functions

2 Shifted and Rotated Schwefel’s Function (CEC 2014[3] F11) 1100

3
Shifted and Rotated Lunacek bi-Rastrigin Function

(CEC 2017[4] F7)
700

4 Expanded Rosenbrock’s plus Griewangk’s Function (CEC2017[4]

f19)
1900

Hybrid

Functions

5 Hybrid Function 1 (N = 3) (CEC 2014[3] F17) 1700

6 Hybrid Function 2 (N = 4) (CEC 2017[4] F16) 1600

7 Hybrid Function 3 (N = 5) (CEC 2014[3] F21) 2100

Composition

Functions

8 Composition Function 1 (N = 3) (CEC 2017[4] F22) 2200

9 Composition Function 2 (N = 4) (CEC 2017[4] F24) 2400

10 Composition Function 3 (N = 5) (CEC 2017[4] F25) 2500

Search range: [-100,100]D

*Please Note: These problems should be treated as black-box problems. The explicit equations of

the problems are not to be used.

1.3. Definitions of the Basic Functions

1) Bent Cigar Function

 2

1

6 2

1

2

() 10
D

i

i

f x x


  x (1)

2) Rastrigin’s Function

   2

2

1

() 10cos 2 10
D

i i

i

f x x x


    (2)

3) High Conditioned Elliptic Function

  
1

6

3

21

1

() 10
iD

D
i

i

f x x






 (3)

4) HGBat Function

1/2
2 2

4

2 2

1 1 1 1

() 0.5 / 0.5
D D D D

i i i i

i i i i

f x x x x D
   

     
         
     
   x (4)

5) Rosenbrock’s Function

     
1

2 22

5 1

1

() 100 1
D

i i i

i

f x x x






   x (5)

6) Griewank’s Function

2

6

1 1

() cos 1
4000

DD
i i

i i

x x
f

i 

 
   

 
 x (6)

7) Ackley’s Function

  
1

7

2

1

1 1
() 20exp(0.2) exp cos 2 20 e

D D

i i

i i

f x x
D D 

 
       

 
 x (7)

8) Happycat Function

1/4

2 2

1 1 1

8 () 0.5 / 0.5
D D D

i i i

i i i

f x D x x D
  

 
     

 
  x (8)

9) Discus Function

 6 2 2

1

2

9 () 10
D

i

i

f x x


 x (9)

10) Lunacek bi-Rastrigin Function

      
2 2

010 1

1 1 1

ˆ ˆ ˆ() min , 10 cos 2
D D D

i i i

i i i

f x dD s x D z
  

   
         

   
  x (10)

 

 

2

0

0 1

*

0

100

0

1
2.5, , 1 , 1

2 20 8.2

10()
, 2sign , for 1,2, ,

100

ˆ

 
       

 


     

  

i

i i

i

d
s d

s D

xx o
y x y i D

x

z x

11) Modified Schwefel’s Function

  
1

11() 418.9829
D

i

i

f x D g z


   (11),

4.209687462275036e 002  i iz x

 

 

    
 

    
 

1/2

2

2

sin if 500

500
500 mod ,500 sin(500 mod ,500) if 500

10000

500
mod ,500 500 sin(mod ,|,500 500) if 500

10000







    

 
     


i i i

i

i i i i

i

i i i

z z z

z
g z z z z

D

z
z z z

D

12) Expanded Schaffer’s Function

Schaffer’s Function:
 

  

2 2 2

2
2 2

sin () 0.5
(,) 0.5

1 0.001

 
 

 

x y
g x y

x y

        1 2 2 3 112 1() , , , ,D D Df g x x g x x g x x g x x   x (12)

13) Expanded Rosenbrock’s plus Griewangk’s Function

            1 2 2 313 6 5 61 16 5 6 5 5() , , , ,D D Df f f x x f f x x f f x x f f x x   x (13)

14) Weierstrass Function

     
max max

14

1 0 0

() cos 2 0.5 cos 2 0.5
D k k

k k k k

i

i k k

f a b x D a b
  

 
           





  x (14)

0.5, 3, max 20  a b k

1.4. Definitions of the CEC’21 Test Suite

A. Basic Functions

1) Bent Cigar Function

   11

*

11() MF f Fo  x x (15)

Properties:

 Unimodal

 Non-separable

 Smooth but narrow ridge

(a) 3-D map for 2-D function (b) Contour map for 2-D function

Figure 1 Bent Cigar Function

2) Shifted and Rotated Schwefel’s Function (the same as F11 in CEC2014[3])

 

2 11

*2

2

1000
()

100
F f F

  
    

  

x
x M

o
 (16)

 (a) 3-D map for 2-D function (b) Contour map for 2-D function

Figure 2 Shifted and Rotated Schwefel’s Function

Properties:
 Multi-modal

 Non-separable

 Local optima’s number is huge and the penultimate local optimum is far from the global

optimum.

3) Shifted and Rotated Lunacek bi-Rastrigin Function (the same as F7 in CEC2017[4])

 3 *

3 10 3

600
()

100

x o
F x f F

  
    

  

M (17)

 (a) 3-D map for 2-D function (b) Contour map for 2-D function

Figure 3 Shifted and Rotated Lunacek bi-Rastrigin Function

Properties:

 Multi-modal

 Non-separable

 Asymmetrical

 Continuous everywhere yet differentiable nowhere

4) Expanded Rosenbrock’s plus Griewangk’s Function (the same as f19 in CEC2017[4])

             *

4 1 2 2 3 1 1 46 5 6 5 6 5 6 5() , , , ,D D DF f f x x f f x x f f x x f f x x F    x (18)

 (a) 3-D map for 2-D function (b) Contour map for 2-D function

Figure 4 Expanded Rosenbrock’s plus Griewangk’s Function

Properties:

 Non-separable

 Optimal point locates in flat area

B. Hybrid Functions

Considering that in the real-world optimization problems, different subcomponents of the variables

may have different properties[7]. In this set of hybrid functions, the variables are randomly divided into

some subcomponents and then different basic functions are used for different subcomponents.

       *

1 1 1 2 2 2() ()N N NF g z g z g z F   x M M M x (19)

()xF : hybrid function

()xig : ith basic function used to construct the hybrid function

 N: number of basic functions

 1 2, , ,  Nz z z z

1 2 1 2 1 1 11
1 2, , , , , , , , , , , ,

    

               n n n n N N DS S S S S S N S S Sz y y y z y y y z y y y

, randperm(1:)  iy x o S D

: used to control the percentage of ()xi ip g

i

1

: dimension for each basic function



N

i

i

n n D

1

1 1 2 2 1 1

1

, , , ,


 



               
N

N N N i

i

n p D n p D n p D n D n

Properties:

 Multi-modal or Unimodal, depending on the basic function

 Non-separable subcomponents

 Different properties for different variables subcomponents

5) Hybrid Function 1 (the same as F17 in CEC2014[3])

 N = 3

= [0.3,0.3,0.4]p

1g : Modified Schwefel’s Function
11 f

2g : Rastrigin’s Function
2 f

3g : High Conditioned Elliptic Function
3 f

6) Hybrid Function 2 (the same as F16 in CEC2017[4])

 N = 4

= [0.2,0.2,0.3,0.3]p

1g : Expanded Schaffer Function
12 f

2g : HGBat Function
4 f

3g : Rosenbrock’s Function
5 f

4g : Modified Schwefel’s Function
11 f

7) Hybrid Function 3 (the same as F21 in CEC2014[3])

 N = 5

= [0.1,0.2,0.2,0.2,0.3]p

1g : Expanded Schaffer Function
12 f

2g : HGBat Function
4 f

3g : Rosenbrock’s Function
5 f

4g : Modified Schwefel’s Function
11 f

5g : High Conditioned Elliptic Function
3 f

C. Composition Functions

   * *

1

 () ()
N

i i i i

i

F g bias F


    x x (20)

 ()xF : composition function

()xig : ith basic function used to construct the composition function

N: number of basic functions

io : new shifted optimum position for each ()xig , define the global and local optima’s position

biasi: defines which optimum is global optimum

i
: used to control each ()xig ’s coverage range, a small i

 gives a narrow range for that ()xig

i
: used to control each ()xig ’s height

i
: weight value for each ()xig , calculated as below:

 

 
2

1

2
2

1

1
exp

2

D

j ij

j

i
D

i

j ij

j

x o

w
D

x o





 
 

  
 

  
 





 (21)

Then normalize the weight
1

/


  
n

i i i

i

w w

So when x io , *
1

 for 1,2, , , () .
0


     


xj i

j i
j N f bias f

j i

The local optimum which has the smallest bias value is the global optimum. The composition

function merges the properties of the sub-functions better and maintains continuity around the

global/local optima.

Functions
*   iFi Fi F are used as gi. In this way, the function values of global optima of gi are equal

to 0 for all composition functions in this report.

In CEC’14[3], the hybrid functions are also used as the basic functions for composition functions

(Composition Function 7 and Composition Function 8). With hybrid functions as the basic functions,

the composition function can have different properties for different variables subcomponents.

Please Note: All the basic functions that have been used in composition functions are shifted and

rotated functions.

8) Composition Function 1 (the same as F22 in CEC2017[4])

=3N

[10,20,30] 

[1,10,1] 

 [0,100,200]bias

g1: Rastrigin’s Function f2

g2: Griewank’s Function f6

g3: Modified Schwefel’s Function f11

 (a) 3-D map for 2-D function (b) Contour map for 2-D function

Figure 5 Composition Function 1

Properties:

 Multi-modal

 Non-separable

 Asymmetrical

 Different properties around different local optima

9) Composition Function 2 (the same as F24 in CEC2017[4])

=4N

[10,20,30,40] 

[10,1e 6,10,1]  

 [0,100,200,300]bias

g1: Ackley’s Function f7

g2: High Conditioned Elliptic Function f3

g3: Griewank’s Function f6

g4: Rastrigin’s Function f2

-100

-50

0

50

100

-100

-50

0

50

100
2000

2500

3000

3500

4000

-100 -80 -60 -40 -20 0 20 40 60 80 100
-100

-80

-60

-40

-20

0

20

40

60

80

100

(a) 3-D map for 2-D function (b) Contour map for 2-D function

Figure 6 Composition Function 2

10) Composition Function 3 (the same as F25 in CEC2017[4])

=5N

[10,20,30,40,50] 

[10,1,10,1e 6,1]  

 [0,100,200,300,400]bias

g1: Rastrigin’s Function f2

g2: Happycat Function f8

g3: Ackley’s Function f7

g4: Discus Function f9

g5: Rosenbrock’s Function f5

 (a) 3-D map for 2-D function (b) Contour map for 2-D function

Figure 7 Composition Function 3

Properties:

 Multi-modal

 Non-separable

 Asymmetrical

 Different properties around different local optima

-100

-50

0

50

100

-100

-50

0

50

100
2000

2500

3000

3500

4000

-100 -80 -60 -40 -20 0 20 40 60 80 100
-100

-80

-60

-40

-20

0

20

40

60

80

100

-100

-50

0

50

100

-100

-50

0

50

100
2000

4000

6000

8000

10000

-100 -80 -60 -40 -20 0 20 40 60 80 100
-100

-80

-60

-40

-20

0

20

40

60

80

100

2. Parametrized Benchmark

The benchmarks are vital to the improvement in global metaheuristics. The two-benchmark

series CEC[4] and COCO[8] are proposed to evaluate the real parameter metaheuristic

algorithms. In this competition, the benchmark functions are considered by applying the

different transformations such as bias, rotation and shift[6]. The all possible combinations of

operators such as bias (exist or does not exist), rotation (exists and does not exist), shift (exists

and does not exist), bias (exists) but rotation (does not exist) and so on are proposed. The

resulting set is known as parameterized benchmark such that the main goal is to be achieved.

The main goal is to test the effect of all possible combinations of transformations in the

benchmark functions as the best transformation can be chosen.

In CEC’17[4] benchmark, 20 basic functions are defined with the inclusion of shift-vector 𝑜𝑖 in

the variables x, multiplication of rotation matrix M, and addition of bias 𝐹𝑖
∗ in the original

objective function 𝑓𝑖. The mathematical equation for the test function is created as:

𝐹𝑖(𝑋) = 𝑓𝑖(𝑀(𝑥 − 𝑜𝑖)) + 𝐹𝑖
∗ (22)

Matrix M is used for the rotation transformation, which contains two possible cases as it does

exist, and it does not exist.

There are some detailed variations for hybrid and composition functions, which make the full

pattern slightly more complicated. The 𝐹𝑖(𝑋) is known parameterized benchmark function in

which we have to test the effect of shift, rotation and bias transformation on the original

benchmark functions. Therefore, the decomposition allows to define the binary parameters that

demonstrate which transformation should be applied and ensures that predictors are

standardized to the same scale. The values taken by the parameters is presented in Table 1 with

the reference Equation number from which the value can be obtained.

Table 1: Parametrization of the benchmark problems

ID Parameter Values Reference Type

𝐶1 Bias 𝐹𝑖
∗ or 0 Equation (22) Controlled

𝐶2 Shift 𝑜𝑖 or 0 Equation (22) Controlled

𝐶3 Rotation M or I Equation (22) Controlled

The parameters (bias, shift and rotation) can be controlled, and they can be activated or

deactivated. While, some other uncontrollable parameters or features can be observed only.

These parameters are problem type, separability, number of local optima and symmetry. The

problem types are unimodal, simple multimodal, hybrid, and composition. Besides, the

problem may be separable or non-separable. There is a few or a huge number of local optima.

The shape of the problem may be symmetric or asymmetric. These parameters are observed

only as their values are fixed.

There are only 8 configurations possible for each function. Therefore, to understand the binary

parameters one example is illustrated as, if we want to check the effect of shift operator not the

rotation and bias operator then we would set M=I (identity matrix) and 𝐹𝑖
∗ = 0. The detailed

description of each binary operator applied on function 𝐹𝑖 has been shown in Table 2.

Table 2: Binary parameter values for each transformation applied on the function 𝐹𝑖.

Name of the Functions Bias Shift Rotation

𝐹𝑖 Basic 0 0 I

𝐹𝑖 Bias 𝐹𝑖
∗ 0 I

𝐹𝑖 Shift 0 𝑜𝑖 I

𝐹𝑖 Rotation 0 0 M

𝐹𝑖 Bias and Shift 𝐹𝑖
∗ 𝑜𝑖 I

𝐹𝑖 Bias and Rotation 𝐹𝑖
∗ 0 M

𝐹𝑖 Shift and Rotation 0 𝑜𝑖 M

𝐹𝑖 Bias, Shift and Rotation 𝐹𝑖
∗ 𝑜𝑖 M

To show the effect of these configurations on the benchmark set, 𝐹9 has been selected as an

example. The 3-D maps for 2 dimensions 𝐹9 in all 8 configurations are shown in Figure 8. In

each figure, the subfigure (a) shows the basic 3-D map of function such that the no

parametrization is used. The subfigures (b), (c), (d) present the function with only shift

parameter, only rotation and only bias, respectively. In the subfigures (e), (f), (g), two

operations are simultaneously used that are shift with rotation, shift with bias and rotation with

bias, respectively. The subfigure (h) shows all the three parameters with the original function.

These figures illustrate the effect of all parameters on the original benchmark functions.

Moreover, their contour maps (For 𝐹9) is also drawn in Figures 9.

(a) 3-D map for 2-D basic function (b) 3-D map for 2-D function with shift operator

(c) 3-D map for 2-D function with rotation (d) 3-D map for 2-D function with bias

(e) 3-D map for 2-D function with shift and

rotation

(f) 3-D map for 2-D function with shift and bias

(g) 3-D map for 2-D function with bias and

rotation

(h) 3-D map for 2-D function with shift, rotation

and bias

Figure 8: Composite Parameterized Function 9

(a) Contour map for 2-D basic function (b) Contour map for 2-D function with shift

operator

(c) Contour map for 2-D function with rotation (d) Contour map for 2-D function with bias

(e) Contour map for 2-D function with shift

and rotation

(f) Contour map for 2-D function with shift and

bias

(g) Contour for 2-D function with bias and

rotation

(h) Contour for 2-D function with shift, rotation

and bias

Figure 9: Contour Maps for Composite Parameterized Function 9

3. Experimental Settings and Evaluation Criteria
3.1. Experimental Settings

Problems: 10 minimization problems

Dimensions: For F1-F10, D = 10, and 20;

Runs / problem: 30

MaxFES:

 MaxFES

D = 10 200,000

D = 20 1,000,000

Search Range: [-100,100]D

Initialization: Uniform random initialization within the search space. For fair comparison, 1000

uniform random seed was already generated and stored in 'input_data\Rand_Seeds.txt' file

and the random seed for each run is based on four factors: Problem size (D), Function No. (func_no),

Runs, and Run Id(run_id) according to:

seed_ind=(problem_size/10*func_no*Runs+run_id)-Runs;
seed_ind=mod(seed_ind,1000);

run_seed=Rand_Seeds(seed_ind);

Matlab users can use:

rng(run_seed,'twister');

Global Optimum: All problems have the global optimum within the given bounds and there is no need

to search outside of the given bounds for these problems.

   * * xi i i iF F Fo

Termination: Terminate when reaching MaxFES or the error value is smaller than 10–8.

3.2. Results Record

1) Record function error value (   *x xii
F F) after

3
5 MaxEFEs
k

D
 

 
 

 (k = 0, 1, 2, 3, ... , 15) for

each run.

For example, in problems with D = 10; the function error value after ⌊10
0

5
−3 × 200,000⌋ ⌊10

1

5
−3 ×

200,000⌋ ⌊10
2

5
−3 × 200,000⌋ … ⌊10

15

5
−3 × 200,000⌋ for each run need to be recorded.

In this case, 16 error values are recorded for each function for each run. Sort the error values achieved

after MaxFES in 30 runs from the smallest (best) to the largest (worst) and present the best, worst, mean,

median and standard variance values of function error values for the 30 runs.

Please Notice: Error values smaller than 10-8 will be taken as zero.

2) Algorithm Complexity

a) Run the test program below:

 0.55x

for i = 1: 200000

 ; / 2; * ; (); log(); exp(); / (2);        x x x x x x x x x sqrt x x x x x x x x

end

 Computing time for the above = T0;

b) Evaluate the computing time just for Function 1. For 200000 evaluations of a certain dimension

D, it gives T1;

c) The complete computing time for the algorithm with 200000 evaluations of the same D

dimensional Function 1 is T2.

d) Execute step c five times and get five T2 values. Mean()T2 T2

The complexity of the algorithm is reflected by: T2 , T1, T0, and (𝑇2 − 𝑇1)/𝑇0.

The algorithm complexities are calculated on 10, 20 dimensions, to show the algorithm complexity’s

relationship with dimension. Also provide sufficient details on the computing system and the

programming language used. In step c, we execute the complete algorithm five times to accommodate

variations in execution time due adaptive nature of some algorithms.

Please Note: Similar programming styles should be used for all T0, T1 and T2.

(For example, if m individuals are evaluated at the same time in the algorithm, the same style

should be employed for calculating T1; if parallel calculation is employed for calculating T2, the

same way should be used for calculating T0 and T1. In other word, the complexity calculation

should be fair.)

3) Parameters

Participants must not search for a distinct set of parameters for each problem/dimension/etc. Please

provide details on the following whenever applicable:

a) All parameters to be adjusted

b) Corresponding dynamic ranges

c) Guidelines on how to adjust the parameters

d) Estimated cost of parameter tuning in terms of number of FEs

e) Actual parameter values used.

4) Encoding

If the algorithm requires encoding, then the encoding scheme should be independent of the specific

problems and governed by generic factors such as the search ranges.

5) Results Format

The participants are required to send the final results as the following format to the organizers and

the organizers will present an overall analysis and comparison based on these results.

Create one txt document with the name “AlgorithmName_FunctionNo._D.txt” for each test function

and for each dimension.

For example, DE results for test function 5 and D = 10, the file name should be “DE_5_10.txt”.

Then save the results matrix (the gray shadowing part) as Table I in the file:

Table I Information Matrix for D Dimensional Function X with the configuration Y.

***.txt Run1 Run2 … Run30

Function error values when

FES=
0

3
5 MaxEFEsD
 

 
 

Function error values when

FES=
1

3
5 MaxEFEsD
 

 
 

Function error values when

FES=
2

3
5 MaxEFEsD
 

 
 

Function error values when

FES=
3

3
5 MaxEFEsD
 

 
 

… …

Function error values when

FES=
14

3
5 MaxEFEsD
 

 
 

Function error values when

FES=
15

3
5 MaxEFEsD
 

 
 

For instance, for function F1 with D=10; 8 configurations are possible; therefore, 8 tables will be created

for D=10. Similarly, for D=20; 8 tables will also be generated. Thus, total of 16 tables must be presented

for function F1.

Therefore, 16 (F1) +16(F2) +… +16 (F10) = 160 files should be zipped and sent to the organizers. Each

file contains a 16*30 matrix.

Notice: All participants are allowed to improve their algorithms further after submitting the initial

version of their papers to CEC2021. And they are required to submit their results in the introduced

format to the organizers after submitting the final version of paper as soon as possible.

3.3. Results Template

Language: Matlab 2020b

Algorithm: Differential Evolution (DE)

Results

Notice:

Considering the length limit of the paper, only Error Values Achieved with MaxFES are need to

be listed. While the authors are required to send all results to the organizers for a better

comparison among the algorithms.

Table II Results for 10 D (Basic)

Func. Best Worst Median Mean Std

1

2

3

4

5

8

9

10

Table III Results for 10D (Shift Operator)

Func. Best Worst Median Mean Std

1

2

3

4

5

6

7

8

9

10

Table IV Results for 10D(Rotation)

Table V Results for 10D(Translation)

Table VI Results for 10D (Shift and Rotation)

Table VII Results for 10D (Shift and Translation)

Table VIII Results for 10D (Rotation and Translation)

Table IX Results for 10D (Shift, Rotation and Translation)

Table X Results for 20D (Basic)

Table XI Results for 20D (Shift Operator)

Table XII Results for 20D (Rotation)

Table XIII Results for 20D(Translation)

Table XIV Results for 20D (Shift and Rotation)

Table XV Results for 20D (Shift and Translation)

Table XVI Results for 20D (Rotation and Translation)

Table XVII Results for 20D (Shift, Rotation and Translation)

Algorithm Complexity

Table XVIII Computational Complexity

 T0 T1 T2 (𝑇2 − 𝑇1)/𝑇0

D = 10

D = 20

3.4. Evaluation Criteria

Algorithms are evaluated with a score that is composed of two parts, Score1 and Score2, both of

which assign equal weights to 10 and 20 dimensional results. Score1 is based on sums of normalized

error values, while Score2 is composed of sums of ranks. Each score contributes 50% to the total

Score, which has a maximum value of 100.

In particular, Score1 begins as an average of 2 sums of normalized functional error values:

𝑆𝑁𝐸 = 0.5 ∑ ∑ 𝑛𝑒𝑖,𝑚
10𝐷 + 0.5 ∑ ∑ 𝑛𝑒𝑖,𝑚

20𝐷𝑖=10
𝑖=1

𝑚=8
𝑚=1

𝑖=10
𝑖=1

𝑚=8
𝑚=1 (22)

where ne is an algorithm’s normalized error value for a given function, configuration and dimension

and SNE is the average of all normalized error values over all functions, configurations and

dimensions. For this competition, ne is defined as:

 𝑛𝑒 =
𝑓(𝐱𝒃𝒆𝒔𝒕)−𝑓(𝐱∗)

𝑓(𝐱best)max−𝑓(𝐱∗)
 , (23)

where f(xbest) is the algorithm’s best result out of 30 trials, f(x*) is the function’s known optimal

value and f(xbest)max is the largest f(xbest) among all algorithms for the given function/dimension

combination. Once SNE has been determined for all algorithms, Score1 is computed as:

𝑆𝑐𝑜𝑟𝑒1 = (1 −
𝑆𝑁𝐸−𝑆𝑁𝐸min

𝑆𝑁𝐸
) × 50 , (24)

where SNEmin is the minimal sum of normalized errors among all algorithms. Score2 begins as an

average of 2 sums of ranks (SR):

𝑆𝑅 = 0.5 ∑ ∑ 𝑟𝑎𝑛𝑘𝑖,𝑚
10𝐷 + 0.5 ∑ ∑ 𝑟𝑎𝑛𝑘𝑖,𝑚

20𝐷𝑖=10
𝑖=1

𝑚=8
𝑚=1

𝑖=10
𝑖=1

𝑚=8
𝑚=1 , (25)

where rank is the algorithm’s rank among all algorithms for a given function, configuration and

dimension that is based on its mean error value (not normalized). Once SR has been determined

for all algorithms, Score2 is computed as:

𝑆𝑐𝑜𝑟𝑒2 = (1 −
𝑆𝑅−𝑆𝑅min

𝑆𝑅
) × 50 , (26)

where SRmin is the minimal sum of ranks among all algorithms. The final Score is the sum of

Score1 and Score2:

 Score = Score1 + Score2 (27)

The entries will be ranked based on the score.

References

[1] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. P. Chen, A. Auger & S. Tiwari, "Problem

Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter

Optimization," Technical Report, Nanyang Technological University, Singapore, May 2005 and

KanGAL Report #2005005, IIT Kanpur, India, 2005.

[2] J. J. Liang, B. Y. Qu, P. N. Suganthan, Alfredo G. Hernández-Díaz, "Problem Definitions and

Evaluation Criteria for the CEC 2013 Special Session and Competition on Real-Parameter

Optimization", Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China

and Technical Report, Nanyang Technological University, Singapore, January 2013.

[3] J. J. Liang, B. Y. Qu, P. N. Suganthan, "Problem Definitions and Evaluation Criteria for the CEC

2014 Special Session and Competition on Real-Parameter Optimization", Computational

Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang

Technological University, Singapore, January 2014.

[4] N. H. Awad, M. Z. Ali, P. N. Suganthan, J. J. Liang, B. Y. Qu, " Problem Definitions and Evaluation

Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter

Numerical Optimization", Computational Intelligence Laboratory, Zhengzhou University,

Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, October

2016.

[5] C. T. Yue, K. V. Price, P. N. Suganthan, J. J. Liang, M. Z. Ali, B. Y. Qu, N. H. Awad, & P.P Biswas,

“Problem Definitions and Evaluation Criteria for the CEC 2020 Special Session and Competition

on Single Objective Bound Constrained Numerical Optimization”, Technical Report. Rep.,

Zhengzhou University and Nanyang Technological University, 2019.

[6] K. R. Opara, A. A. Hadi, A. W. Mohamed, “Parametrized Benchmarking: an outline of the idea and

a feasibility study”. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference

Companion. GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico

https://doi.org/10.1145/3377929.3389944

[7] Xiaodong Li, Ke Tang, Mohammad N. Omidvar, Zhenyu Yang, and Kai Qin, "Benchmark

Functions for the CEC’2013 Special Session and Competition on Large-Scale Global Optimization",

Technical Report, 2013.

[8] N. Hansen, A. Auger, S. Finck, and R. Ros. 2009. Real-Parameter Black-Box Optimization

Benchmarking 2009: Experimental setup. Technical Report. INRIA. http://coco.gforge.inria.fr

https://doi.org/10.1145/3377929.3389944

