
Experimental Comparison of Methods to Handle

Boundary Constraints in Differential Evolution

Jaroslaw Arabas1, Adam Szczepankiewicz2, and Tomasz Wroniak2

1 Institute of Electronic Systems,
Warsaw University of Technology, Poland

jarabas@elka.pw.edu.pl
2 Faculty of Electronics and Information Technology,

Warsaw University of Technology, Poland

Abstract. In this paper we show that the technique of handling bound-
ary constraints has a significant influence on the efficiency of the Differ-
ential Evolution method. We study the effects of applying several such
techniques taken from the literature. The comparison is based on ex-
periments performed for a standard DE/rand/1/bin strategy using the
CEC2005 benchmark. The paper reports the results of experiments and
provides their simple statistical analysis. Among several constraint han-
dling methods, a winning approach is to repeat the differential mutation
by resampling the population until a feasible mutant is obtained. Cou-
pling the aforementioned method with a simple DE/rand/1/bin strategy
allows to achieve results that outperform in many cases results of almost
all other methods tested during the CEC2005 competition, including the
original DE/rand/1/bin strategy.

1 Introduction

Differential Evolution (DE) [1, 2] has proved an efficient and a very simple algo-
rithm from the Evolutionary Computation (EC) family. In particular, the DE
scheme overcomes one of the basic difficulties that are met when tuning an Evo-
lutionary Algorithm (EA), namely, the issue of a proper setting of the mutation
range. In DE, mutation is based on differences between chromosomes contained
in the population, and, since their distribution is influenced by the shape of the
fitness function, the distribution of mutants reflects that shape as well. This
effect has been called by Storn a “contour matching property”.

The basic DE scheme has been introduced for an unconstrained optimization
task, whereas in most of the engineering problems, there may appear additional
constraints that any solution must satisfy. In general, handling constraints in
EC is a problem itself, and a lot of research has been conducted to elaborate
efficient methods of solving it. In this contribution we focus on applying DE
in optimization problems with boundary constraints, where each coordinate of
the solution must fit into the range between a lower and an upper bound. This
form of constraints allows for very easy check for feasibility, and it is also very
easy to define constraint handling strategies that are based on repairing. For



these reasons, the choice of a technique to handle boundary constraints does not
appear to be a serious problem, and maybe this explains why we were unable to
find a systematic study that addresses the issue of boundary constraints handling
methods. We give an experimental evidence that this issue cannot be treated too
easily, since it may have a surprisingly big influence on the DE effectiveness.

In the research papers devoted to DE we can find several techniques to handle
boundary constraints. Price et al. [1] suggest that random reinitialization (that
is, replacing an infeasible solution by a randomly initialized one) is “the most
unbiased approach”. This method has been also used e.g. in [3, 4]. Price et al. [1]
defined also a “bounce back” strategy, where an infeasible solution y, generated
by mutating a feasible solution x, is replaced by a new feasible solution located
on a line between x and y. This approach has been applied e.g. in [5, 6]. Another
approach to repairing infeasible solutions is to reflect them back from the bound
[7]. Yet another possibility [8] is to project infeasible solutions on bounds, which
consists in changing each parameter that exceeds a boundary value to a new
value which equals the boundary.

Some optimization tasks, e.g. digital filter design, are periodic in nature.
Then, search can be constrained to parameter values from a certain base interval
covering a single period, which are treated feasible. Values outside that range
can be shifted by an integer multiple of the interval length to fit it the feasible
area [9]. We shall call this strategy a wrapping approach.

The motivation for this paper was given by studying the results of the
CEC2005 competition of optimization algorithms [10]. In the CEC2005 pro-
ceedings, 18 papers took part in the competition. Among the submitted papers,
some authors did not report details of handling constraints, and those who re-
ported used various techniques. In the group of algorithms that performed quite
well, one can find a very basic DE method [7]. In this paper we investigate if
the results of this method can be improved by changing the method of handling
boundary constraints.

2 Differential Evolution algorithm

The outline of the DE algorithm is depicted in Fig. 1. With P t we denote the
population in the generation number t, and P t

i stands for the i-th chromosome
in the population P t; finally, with P t

i,j and xj we denote the j-th coordinate
of the chromosome P t

i,j and x, respectively. All chromosomes are n-dimensional
vectors of real numbers, and µ is the size of the population P t.

The algorithm minimizes the fitness function f : Rn → R. We assume that
for each dimension, a pair of numbers li, ui is defined which are lower and upper
bound of the feasible area in the i-th dimension. Thus, the feasible area is defined
by two vectors composed of lower bound values l and upper bound values u.

In our study we considered a simple DE/rand/1/bin strategy which imple-
ments DE steps in the following way. In the initialization phase, population P 0

is filled with chromosomes that are generated with uniform distribution in the
feasible area [l, u]. The selection rule returns a chromosome x = P t

i where the



algorithm DE with constraint handling
P 0
← initialize(l, u)

repeat until stop condition met
for i ∈ 1...µ

x← selection (P t)
v ← differential mutation(x, P t)
if v is feasible then w ← v

else w← repair(v, x, P t)
y ← crossover(P t

i , w)
P t+1

i
← replacement(P t

i , y)
end for

t← t+ 1
end repeat

Fig. 1. Outline of a basic DE algorithm

index i is a random variable with uniform distribution in {1, ..., µ}. Differential
mutation uses two chromosomes P t

j and P t
k whose indexes are also random vari-

ables with uniform distribution in {1, ..., µ}. In the result, a chromosome v is
generated according to the formula

v = x+ F (P t
j − P t

k) (1)

where F is a scaling factor defined by the user. When a constrained optimization
problem is considered, chromosome v may become infeasible, therefore a repair-
ing strategy is applied that generates a new feasible chromosome w instead of
v. In this paper we study several versions of the repair procedure, and those
versions are discussed in the next subsection. The new chromosome w, which
resulted from repairing the chromosome v, undergoes crossover with the chro-
mosome P t

i . In our study we focus on the binary crossover which is defined as
follows

yj =

{

wj with probability CR

P t
i,j with probability 1− CR

(2)

where CR is a user-defined parameter. In the replacement step, i-th chromosome
for the next generation results from the tournament of chromosomes P t

i and y:

P t+1
i =

{

y f(y) < f(P t
i )

P t
i otherwise

(3)

Considered constraint handling methods In the presented study we com-
pare the following methods of handling boundary constraints which we have
found in the literature.

– Conservatism: If the differential mutation resulted in an infeasible chromo-
some, it is rejected and w = x. This strategy is equivalent to the assumption



that the infeasible chromosome will not be repaired, but it will be rejected
in the replacement phase.

– Reinitialization: Chromosome w is generated with the uniform distribution
in the feasible area.

– Reflection: Chromosome w is generated by reflecting coordinate values from
the exceeded boundary values

wi =











vi li ≤ vi ≤ ui

2ui − vi vi > ui

2li − vi vi < li

(4)

If the resulting chromosome is still infeasible, it is reflected again, and the
procedure is repeated until feasibility is obtained.

– Projection: All coordinate values that exceed bounds are trimmed to the
boundary values

wi =











vi li ≤ vi ≤ ui

ui vi > ui

li vi < li

(5)

– Wrapping: All coordinate values that exceed the admissible range are shifted
by an integer multiple of the range such that they become feasible

wi =

{

vi li ≤ vi ≤ ui

vi + ki(ui − li) otherwise
(6)

where ki is an integer number that guarantees feasibility for the i-th dimen-
sion.

– Resampling: Selection of a random chromosome from P t and its differential
mutation is repeated until a feasible chromosome is obtained:

w = differential mutation(selection(P t), P t) (7)

This means that chromosomes x, P t
j and P t

k are selected anew by picking
them with the uniform distribution from the population P t.

3 Experiments and results

Conditions of testing We performed an experimental comparison using the
suite of fitness functions that have been defined for the CEC2005 competition.
Detailed description of functions and conditions of testing are defined in [11],
therefore we provide only a brief information about the benchmark.

The benchmark is a compilation of 25 minimization problems that can be
divided into four groups (in brackets we refer to function numbers assumed orig-
inally in the benchmark definition): 1) unimodal functions (f1 up to f5), 2)
basic multimodal functions (f6 up to f12) which include functions by Ackley,



Griewank, Rastrigin, Rosenbrock, Schwefel, and Weierstrass, 3) expanded func-
tions (f13, f14) which are combinations of Griewank, Rosenbrock and Shaffer
functions, 4) composition functions (f15 up to f25) which resulted from combin-
ing functions from groups 1) – 3). Most of the problems from that benchmark
are defined for a shifted, rotated, and scaled coordinate system. With two ex-
ceptions (f7 and f25), all other problems have boundary constraints. Some of
the benchmark functions have their global minimum on the boundary. Tests are
performed for 10-dimensional and 30-dimensional problems.

For each optimization problem, the algorithm is run 25 times, and each time
it returns the best value found in that run. For each benchmark function its
global minimum is known, so the difference between the fitness value of the
best chromosome and the true global minimum can be treated as the error of
a single run. Thus, for 25 independent runs one obtains populations of 25 error
values whose statistics are reported. For a better readability and compactness,
in our study we decided to reduce the suggested set of reported error statistics
to the mean value and standard deviation. They are computed for populations
of solutions obtained by each of 25 independent runs after n · 10000 evaluations
of the fitness function.

All experiments were performed using a plain DE/rand/1/bin strategy as-
suming the following parameter values: population size µ = 10n, scaling factor
F = 0.8, binary crossover rate CR = 0.9. We applied these settings and per-
formed testing with each of the aforementioned constraint handling techniques.

Results Results obtained by DE/rand/1/bin with various constraint handling
methods are reported in Tab. 1, 2 for all bounded CEC2005 problems. To facil-
itate the interpretation of results, for each test function we use the mean error
values to assign ranks to all constraint handling methods under comparison.
Then, for each constraint handling method we average its ranks over all test
functions and we report these averaged rank values.

In addition to the mean value and standard deviation of the fitness function,
we indicate the percentage of chromosomes that have been generated outside
the admissible area and required repairing. We provide the mean values of the
percentage of repaired chromosomes for each constraint handling method (av-
eraged over all test functions). This indicates how effectively a constraint han-
dling method avoids generation of infeasible chromosomes. We also report for
each function how frequently a constraint handling method was used (averaging
over all constraint handling methods), which informs about the importance of a
proper choice of a constraint handling method for that particular function.

A general conclusion is that the choice of the constraint handling technique
may significantly influence the final result. Still, for 10-dimensional problems
it is not clear which strategy is the most efficient. For some functions, like
f1, f2,f13, f14, application of any constraint handling technique yields similar
results. Projection and reflection work well when the global minimum is lo-
cated on bounds or close to them, which is the case of functions f5,f18 − f20.
Reinitialization appears extremely effective for the Schwefel 1.2 problem (f12).
Resampling and conservatism are clearly winning strategies only for the Weier-



Table 1. Mean and standard deviation of results yielded by DE/rand/1/bin after
100000 fitness function evaluations for 10-dimensional problems from CEC2005

projection reflection resampling conservative wrapping reinitialize % repaired
f1 mean 7.89E-09 8.14E-09 7.73E-09 8.59E-09 7.59E-09 8.37E-09 8.1

std 1.85E-09 1.26E-09 1.59E-09 9.57E-10 1.50E-09 1.10E-09
f2 mean 8.14E-09 8.65E-09 8.24E-09 8.15E-09 7.73E-09 8.52E-09 11.6

std 1.62E-09 1.05E-09 1.61E-09 1.41E-09 1.39E-09 1.24E-09
f3 mean 1.61E-08 3.58E-08 8.58E-09 1.35E-07 5.33E-08 5.18E-08 15.3

std 8.23E-09 3.81E-08 1.10E-09 1.21E-07 3.41E-08 4.10E-08
f4 mean 8.18E-09 8.21E-09 8.75E-09 8.24E-09 8.28E-09 8.18E-09 11.4

std 1.34E-09 1.48E-09 1.12E-09 1.31E-09 1.26E-09 1.48E-09
f5 mean 1.23E-08 4.91E-05 3.59E-06 1.63E+00 1.33E+00 1.39E+00 67.9

std 8.72E-09 3.88E-05 1.84E-06 6.88E-01 4.92E-02 6.01E-01
f6 mean 3.81E-06 1.59E-01 1.69E-06 1.74E-05 4.66E-06 1.59E-01 7.75

std 6.10E-06 7.81E-01 2.00E-06 1.84E-05 3.76E-06 7.81E-01
f8 mean 2.05E+01 2.05E+01 2.06E+01 2.07E+01 2.05E+01 2.05E+01 15.0

std 7.25E-02 7.35E-02 1.55E-01 1.22E-01 9.82E-02 9.41E-02
f9 mean 2.75E+01 3.34E+01 2.46E+01 2.45E+01 2.32E+01 2.52E+01 13.3

std 1.94E+01 1.30E+01 1.32E+01 1.66E+01 1.71E+01 1.45E+01
f10 mean 2-19E+01 3.39E+01 2.42E+01 2.43E+01 2.49E+01 1.95E+01 11.7

std 1.36E+01 1.45E+01 1.61E+01 1.60E+01 1.66E+01 1.55E+01
f11 mean 6.58E+00 7.35E+00 4.12E+00 4.71E+00 8.79E+00 8.11E+00 16.4

std 2.78E+00 2.30E+00 3.55E+00 3.79E+00 1.38E+00 2.90E+00
f12 mean 1.04E+02 5.22E+00 6.23E+01 1.73E+02 5.54E+01 4.00E-01 13.3

std 4.05E+02 8.11E+00 3.05E+02 4.61E+02 2.64E+02 1.96E+00
f13 mean 2.76E+00 2.77E+00 2.97E+00 3.00E+00 2.85E+00 2.79E+00 3.6

std 1.21E+00 1.22E+00 1.11E+00 9.62E-01 1.12E+00 1.22E+00
f14 mean 3.80E+00 3.69E+00 3.78E+00 3.61E+00 3.94E+00 3.84E+00 17.5

std 6.37E-01 5.20E-01 4.98E-01 6.86E-01 1.39E-01 4.36E-01
f15 mean 3.84E+02 3.02E+02 2.08E+02 2.59E+02 2.05E+02 1.88E+02 11.6

std 9.23E+01 1.31E+02 1.05E+02 1.09E+02 1.13E+02 9.87E+01
f16 mean 1.55E+02 1.53E+02 1.47E+02 1.35E+02 1.48E+02 1.50E+02 13.0

std 3.52E+01 3.16E+01 3.54E+01 2.90E+01 3.08E+01 2.95E+01
f17 mean 1.69E+02 1.78E+02 1.56E+02 1.60E+02 1.55E+02 1.61E+02 16.1

std 2.81E+01 2.60E+01 2.62E+01 2.41E+01 2.35E+01 3.51E+01
f18 mean 3.82E+02 4.00E+02 8.00E+02 7.40E+02 8.00E+02 8.00E+02 12.0

std 1.71E+02 2.00E+02 2.64E-11 1.62E+02 7.61E-10 7.15E-10
f19 mean 3.63E+02 3.40E+02 7.80E+02 7.40E+02 7.40E+02 8.00E+02 11.6

std 1.50E+02 1.36E+02 9.80E+01 1.62E+02 1.62E+02 4.80E-10
f20 mean 3.52E+02 3.60E+02 8.00E+02 7.45E+02 7.64E+02 8.00E+02 11.5

std 1.44E+02 1.62E+02 2.16E-11 1.66E+02 1.38E+02 1.35E-09
f21 mean 5.00E+02 5.00E+02 4.36E+02 4.52E+02 4.92E+02 4.92E+02 7.9

std 8.28E-12 3.20E-12 9.33E+01 8.54E+01 3.92E+01 3.92E+01
f22 mean 7.83E+02 7.04E+02 6.80E+02 6.84E+02 6.27E+02 7.43E+02 12.0

std 2.20E+01 1.76E+02 1.93E+02 1.92E+02 2.24E+02 1.31E+02
f23 mean 5.59E+02 5.59E+02 5.98E+02 6.34E+02 5.85E+02 5.72E+02 8.1

std 1.44E-12 1.68E-12 1.05E+02 1.01E+02 5.93E+01 4.39E+01
f24 mean 2.14E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 2.00E+02 8.5

std 6.64E+01 3.15E-12 3.00E-12 9.25E-11 2.86E-11 3.94E-11
avg. rank 2.87 3.35 2.74 3.39 3.00 3.43

% repaired 15.5 12.4 14.7 15.0 13.6 13.7



strass function f11. Despite of local differences, average percentage of repaired
chromosomes stays on roughly similar level for all methods under comparison.

In contrast to the 10-dimensional case, for 30-dimensional problems a clear
picture is obtained. Resampling appears the most effective constraint handling
strategy. Projection and reflection seem to be the methods of the second choice.
Reinitialization performs surprisingly bad. As for the average percentage of in-
feasible chromosomes, its clear minimum value is recorded for the reinitialization,
and for the other methods under comparison, this value is roughly similar. Thus
we state a hypothesis that the good performance of the resampling strategy
results from its efficiency in avoiding generation of infeasible chromosomes.

Resampling method is the only one where the repairing cost cannot be guar-
anteed. To estimate it, for each test function we computed the average number
of trial chromosomes that are generated to repair a single infeasible chromosome.
For 10-dimensional problems, the average repairing cost ranged from 2.3 to 6.8
(the mean value was 3.3), and for 30-dimensional problems, it ranged from 3.8
to 29.3 (the mean value was 6.7).

Comparison with other CEC2005 competitors Interpretation of the pre-
sented results becomes easier after looking at Tab. 3 which contains a comparison
of the results between DE/rand/1/bin with constraint handling by resampling
and the algorithms that were found superior in the summary of the CEC2005
competition [10]. Those algorithms are: DE variants — plain DE/rand/1/bin[7]
(treated as a reference method), DE-535[12] (modified DE/rand/1/bin, scaling
factor generated randomly) L-SaDE[13] (DE with adaptive scaling factor and
local search incorporated); Memetic EA — BLX-GL50[14], BLX-MA[15], SPC-
PNX[16]; Steady state EA — K-PCX[17]; Coevolutionary EA — CoEVO[18];
simple Particle Swarm Optimization DMS-L-PSO[19]; Estimation of Distribu-
tion — EDA[20] and CMA-ES using two restart strategies — G-CMA-ES[21],
L-CMA-ES[22]. For L-SaDE and DMS-L-PSO, no results have been reported for
n = 30, and for DE-520, only results for f1 − f14 are available.

Each cell of the table, which corresponds to a function fi and the competing
algorithm number j, indicates if the mean error achieved by DE/rand/1/bin
with resampling was smaller (symbol ‘+’) or greater (symbol ‘–’) than the mean
error achieved by the algorithm number j for the function fi. Since the com-
pared methods are stochastic, we applied a generalized t-Student’s test of equal
means. This generalization, called Welch test, is applicable for samples driven
from normal distributions with different standard deviations. Symbols ‘–’ or ‘+’
appear when the difference was statistically significant, i.e., when the probability
of accepting the null hypothesis that both mean values were equal was smaller
than 0.05. If the null hypothesis could not be rejected, it is indicated with ‘·’.

Analysis of Tab.3 indicates that, for several test functions, the combination
of the DE with the resampling method could have allowed the DE/rand/1/bin to
perform significantly better than the DE version with reinitialization [7], which
might have allowed to even outperform the winners of the CEC2005 competition
for some functions. This effect is clearly visible in 30 dimensions on multimodal
composition functions, where [7] reported rather poor results. For unimodal and



Table 2. Mean and standard deviation of results yielded by DE/rand/1/bin after
300000 fitness function evaluations for 30-dimensional problems from CEC2005

projection reflection resampling conservative wrapping reinitialize % repaired
f1 mean 6.82E+01 6.30E+01 1.53E+01 7.07E+02 3.00E+02 3.63E+02 50.0

std 2.61E+01 2.06E+01 7.12E+00 1.98E+02 9.75E+01 1.01E+02
f2 mean 1.61E+02 2.06E+02 1.57E+01 1.23E+03 5.49E+02 6.37E+02 60.7

std 7.11E+01 5.59E+01 6.65E+00 6.20E+02 1.70E+02 2.29E+02
f3 mean 4.96E+05 6.04E+05 5.97E+03 3.93E+06 1.48E+06 1.53E+06 76.8

std 1.93E+05 1.78E+05 2.68E+03 1.75E+06 4.96E+05 4.44E+05
f4 mean 5.57E+02 7.09E+02 7.61E+01 4.18E+03 1.65E+03 1.97E+03 67.3

std 1.93E+02 2.33E+02 3.98E+01 2.54E+03 5.30E+02 5.87E+02
f5 mean 3.93E+03 4.43E+03 9.09E+02 1.17E+04 8.13E+03 9.80E+03 88.1

std 8.23E+02 5.49E+02 4.99E+02 1.50E+03 9.92E+02 1.37E+03
f6 mean 5.14E+04 3.97E+04 1.16E+04 3.90E+06 7.66E+05 1.67E+06 51.4

std 3.26E+04 2.41E+04 9.02E+03 2.38E+06 5.11E+05 1.11E+06
f8 mean 2.10E+01 2.10E+01 2.11E+01 2.11E+01 2.09E+01 2.10E+01 46.3

std 5.22E-02 4.26E-02 2.26E-01 2.18E-01 1.08E-01 5.22E-02
f9 mean 1.16E+02 1.30E+02 8.97E+01 1.84E+02 1.59E+02 1.68E+02 67.3

std 3.36E+01 4.19E+01 1.14E+01 2.94E+01 2.91E+01 3.35E+01
f10 mean 1.41E+02 1.48E+02 9.91E+01 2.41E+02 1.98E+02 2.17E+02 70.5

std 2.58E+01 3.52E+01 4.24E+01 1.60E+01 3.02E+01 1.76E+01
f11 mean 3.98E+01 3.74E+01 2.20E+01 2.56E+01 3.87E+01 3.72E+01 54.2

std 2.73E+00 5.29E+00 5.89E+00 2.50E+00 3.72E+00 5.59E+00
f12 mean 1.00E+05 4.79E+04 1.02E+04 7.65E+04 8.85E+04 6.34E+04 65.7

std 4.45E+04 2.12E+04 6.64E+03 3.00E+04 2.96E+04 2.58E+04
f13 mean 1.85E+01 1.82E+01 1.57E+01 1.92E+01 1.77E+01 1.80E+01 30.0

std 1.07E+00 1.31E+00 1.94E+00 1.44E+00 1.41E+00 1.61E+00
f14 mean 1.35E+01 1.34E+01 1.31E+01 1.31E+01 1.36E+01 1.36E+01 55.9

std 2.46E-01 4.19E-01 9.91E-01 6.40E-01 2.37E-01 2.07E-01
f15 mean 4.48E+02 4.50E+02 4.30E+02 5.11E+02 4.87E+02 4.84E+02 60.9

std 2.59E+01 2.06E+01 3.56E+01 3.22E+01 1.94E+01 4.42E+00
f16 mean 1.65E+02 1.70E+02 1.36E+02 3.01E+02 2.46E+02 2.60E+02 76.3

std 3.13E+01 3.76E+01 2.83E+01 4.05E+01 1.95E+01 1.99E+01
f17 mean 2-47E+02 2.56E+02 1.89E+02 3.36E+02 2.97E+02 2.99E+02 85.8

std 1.87E+01 2.59E+01 5.95E+01 5.34E+01 2.10E+01 1.92E+01
f18 mean 9.22E+02 9.33E+02 8.61E+02 9.93E+02 9.62E+02 9.68E+02 90.6

std 4.52E+00 3.76E+00 5.34E+01 2.80E+01 1.70E+01 2.75E+01
f19 mean 9.22E+02 9.33E+02 8.44E+02 9.95E+02 9.49E+02 9.63E+02 89.9

std 4.52E+00 5.23E+00 5.29E+01 2.40E+01 2.65E+01 2.90E+01
f20 mean 9.22E+02 9.32E+02 8.39E+02 9.94E+02 9.53E+02 9.66E+02 89.8

std 4.51E+00 5.71E+00 5.13E+01 2.41E+01 2.19E+01 2.70E+01
f21 mean 5.25E+02 5.09E+02 5.04E+02 6.76E+02 5.79E+02 6.15E+02 56.1

std 3.28E+01 3.15E+00 1.96E+00 6.92E+01 3.44E+01 5.10E+01
f22 mean 8.88E+02 9.26E+02 9.29E+02 1.02E+03 9.94E+02 9.96E+02 88.0

std 1.01E+01 1.12E+01 1.80E+01 1.47E+01 1.26E+01 1.50E+01
f23 mean 5.50E+02 5.40E+02 5.35E+02 7.52E+02 5.97E+02 6.73E+02 57.3

std 1.09E+01 5.35E+00 2.99E+00 1.24E+02 2.57E+01 1.28E+02
f24 mean 5.62E+02 2.20E+02 2.05E+02 5.45E+02 3.40E+02 4.01E+02 61.9

std 3.61E+02 5.20E+00 1.72E+00 1.16E+02 5.19E+01 7.65E+01
avg. rank 2.74 2.65 1.09 5.30 4.09 4.48

% repaired 73.8 66.2 51.7 71.8 68.6 68.5



basic multimodal functions, DE/1/rand/bin with any constraint handling tech-
nique is relatively ineffective. In our opinion this indicates a poor performance in
exploitation which can be overcome by intelligent restarting and/or by the hy-
bridization with some local optimization method, like in several other methods
that took part in the competition [13–16,21, 22].

Table 3. Comparison of the DE/rand/1/bin with resampling versus leading optimiza-
tion methods from CEC2005

n = 10 1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
DE/rand/1/bin – – + – – – – – + · + – – · + · – – – + · · ·

DE.535 – · + + + + – – – – · – – · – – – · – + + + –
L.SaDE – – + · + – – – – · · – – – – – · · – · · · ·

BLX.GL50 · · + · – – – – – – · – – + – – – – – + · · ·

BLX.MA + + + + + + – – – · · – – + – – + · · + · + –
SPC.PNX + + + + – + + – – – · – – · – – – – – + · · ·

K.PCX + + + · + · – – – + · – – + – – · · · + · + –
CoEVO + · · · + + – · · + + – · + + + + · + + + + –

DMS.L.PSO – – – + – – – – – · · – – – – – · · + + · + ·

EDA – – – – + – – + + + · · · + + + – – – + + · ·

G.CMA.ES – – – – – – – – – – · – – · – – – – – + · · ·

L.CMA.ES – – – · – – – + + · · – · · – + – – – · · + –

n = 30 1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
DE/rand/1/bin – – + – – – – – – + · – · + + + + + + + + + –

DE.535 – + + + + – · – – · – – · – + – · · + + – + –
BLX.GL50 – – – – – – – – – · · – – – – – + + + – – + –
BLX.MA – – + – + – – – · + – – – – + + · + + – – + –
SPC.PNX – – + – + – – – – – · – · – – – + + + – – · –
K.PCX – – – + + – – – – + – – + + – · – · · + + + –
CoEVO – – – + + – – + + + + – · · + + + + + + + + –
EDA + + + + + + – + + + + + + + + + + + + · – + –

G.CMA.ES – – – · – – – – – – · – · – – + + + + – – · –
L.CMA.ES – – – + – – – + + – · – + – – + + + + – – · –

4 Summary

We showed that the results obtained by the DE/rand/1/bin algorithm were sig-
nificantly influenced by the method to handle boundary constraints. A strategy
that repeats the differential mutation until a feasible solution is found appeared
to be a winning one, and in particular, it appeared superior to reinitialization
which is nowadays quite commonly used in DE. This observation might indicate
yet another possibility to improve efficiency of the DE by choosing an appropri-
ate boundary constraint handling technique.

References

1. Price, K., et al.: Differential Evolution: A Practical Approach to Global Optimiza-
tion. Springer (2005)

2. Neri, F., Tirronen, V.: Recent advances in Differential Evolution: a survey and
experimental analysis. Artificial Intelligence Rev. 33(1-2) (2010) 61–106



3. Qin, A.K., et al.: Differential Evolution algorithm with strategy adaptation for
global numerical optimization. IEEE Trans. Evolutionary Computation 13(2)
(2009) 398–417

4. Liu, J., Lampinen, J.: A Fuzzy Adaptive Differential Evolution algorithm. Soft
Computing 9(6) (2005) 448–462

5. Zhang, J., Sanderson, A.C.: JADE: adaptive Differential Evolution with optional
external archive. IEEE Trans. Evolutionary Computation 13(5) (2009) 945–958

6. Doumpos, M., Marinakis, Y., Marinaki, M., Zopounidis, C.: An evolutionary ap-
proach to construction of outranking models for multicriteria classification: The
case of the ELECTRE TRI method. Eur. J. of Operational Research 199(2)
(2009) 496 – 505

7. Rönkkönen, J., et al.: Real-parameter optimization with differential evolution. In:
CEC2005, IEEE (2005)

8. Brest, J., et al.: Self-adapting control parameters in differential evolution: A com-
parative study on numerical benchmark problems. IEEE Trans. Evolutionary Com-
putation 10(6) (2006) 646–657

9. Karabogal, N., Cetinkayal, B.: Design of digital FIR filters using Differential Evo-
lution algorithm. Circuits, Systems, Signal Processing 25(5) (2006) 649 – 660

10. Hansen, N.: Compilation of results on the 2005 CEC benchmark function set.
http://www.ntu.edu.sg/home/epnsugan/index files/CEC-05/compareresults.pdf

11. Suganthan, P.N., et al.: Problem definitions and evaluation criteria for the CEC
2005 special session on real-parameter optimization. Technical report, Nanyang
Tech. Univ. (2005)

12. Bui, L.T., et al.: Comparing two versions of differential evolution in real parameter
optimization. In: CEC2005, IEEE (2005)

13. Qin, A., Suganthan, P.: Self-adaptive differential evolution algorithm for numerical
optimization. In: CEC2005, IEEE (2005)

14. Martines, C.G., Lozano, M.: Hybrid real-coded genetic algorithms with female and
male differentiation. In: CEC2005, IEEE (2005)

15. Molina, D., et al.: Adaptive local search parameters for real-coded memetic algo-
rithms. In: CEC2005, IEEE (2005)

16. Ballester, P., et al.: Real-parameter optimization performance study on the CEC-
2005 benchmark with SPC-PNX. In: CEC2005, IEEE (2005)

17. Sinha, A., et al.: A population-based, steady-state procedure for real-parameter
optimization. In: CEC2005, IEEE (2005)

18. Posik, P.: Real parameter optimization using mutation step co-evolution. In:
CEC2005, IEEE (2005)

19. Liang, J., Suganthan, P.: Dynamic multi-swarm particle swarm optimizer with
local search. In: CEC2005, IEEE (2005)

20. Yuan, B., Gallagher, M.: Experimental results for the special session on real-
parameter optimization at CEC 2005: A simple, continuous EDA. In: CEC2005,
IEEE (2005)

21. Auger, A., et al.: A restart CMA evolution strategy with increasing population
size. In: CEC2005, IEEE (2005)

22. Auger, A., et al.: Performance evaluation of an advanced local search evolutionary
algorithm. In: CEC2005, IEEE (2005)


