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Abstract— actual selection probability of an individual will be difent
from the approximate selection probability we have used in
the formulas. We show that for small populations, current co
variance matrix of the sampling distribution may signifitdgan

In this contribution we discuss the ability of a generationaiffer from the approximated one, and the difference leads t
Evolutionary Algorithm (EA) inR™ to perform task of finding wider distribution of points generated by the EA.
attraction basins of local maxima of the fitness functionain  For the considered Gaussian fitness function, the sampling
hope that one of these maxima is the global one. It has batistribution is usually Gaussian (except for one type of
reported by many authors, e.qg. [4], that in consecutive E gearithmetic crossover), and we characterize this functioh n
erations, individuals form relatively compact cluster$jose only with the covariance matrix, but also with the value of
middlepoints drift in the search space. Moreover, dynamigpread which is defined as the product of eigenvalues of
of the cluster middlepoint contains relatively long pesasf the covariance matrix. The intuition of the spread is theare
small changes which chaotically oscillate around a certaph the set which will be densely covered with points when
“stable” position étasisperiod), and relatively short periods ofthe EA is in the stasis period. Thus, spread is related to
rapid changes of the population middlepoint, whose diogcti the population diversity [5]. The difference between papul
stays similar at least for few generations. Period of chasgediversity definitions and spread lies in the fact, that the
identified with thesaddle crossingghenomenon [2] , when the diversity measures are based on distances between indisidu
population changes its position by going from the attractidn the population, whereas spread characterizes the pilitpab
basin on one local maximum to the other, and on the wayistribution of the random variable, whogefold realization
poorly fit points around the border of these two attractio® the population contents.
basins are generated and reproduced. Finally we consider a fitness function which is sum of two

We approach to characterize the saddle crossing ability Bussian functions, one of them defining a local maximum,
the analysis of the pattern in which points are generatelden tand another one — a global one. We attempt to characterize
stasis period. EA generates individuals in a random way, ggility of saddle crossing assuming the “stable” sampling
we characterize the probability distribution of genergtan distribution corresponding to one of the Gaussian termd, an
offspring individual when the population contents is knowranalyzing the chance to generate a point from the attraction
we call this probability distribution @ampling distribution pasin of the maximum defined by the other Gaussian term. We
Analytical formulas for the sampling distribution have beeperform experimental analysis of the saddle crossing psce

given by Qi and Palmieri [9], who considered proportionadnd we show the influence of the population size on the EA
selection, uniform crossover and Gaussian mutation, agflectiveness in finding global maximum.

were extended by Nomura [8] for different version of linear

crossover. In the aforementioned results, the authors rthede

assumption about the infinite size of the population. We g9 Evolutionary Algorithm

not make such assumption, since we are not much concerned

about the distribution of individuals in a single populatiout ~ We consider a generational Evolutionary Algorithm (EA)
rather about the set of points that are generated in multiglepicted in Fig.1. Chromosomes are vectors fif n < oo,
generations of the EA in the period of stasis. We provide apnd ¢ : " — R is the fitness function to be maximized
proximate formulas for the sampling distribution in thesiga Without any additional constraints. In each generatiodivid-
period assuming that the fitness function is correlated Gans uals are reproduced, crossed over and mutated, and the new
in R". The approximation follows from the assumption, tha@opulation of mutants becomes the base population for the
the influence of a single individual's fithess on the totaldiga Next generation. We assume that crossover takes two parents
of the population is neglible. We consider the case when @#d produces a single offspring.

crossover is applied, and when the crossover is uniform orSymbol ;. stands for the size of the populatid®’. We
arithmetic. Thus we enhance the results by Karcz-Dulepgnote thei-th element of the populatioR’ and O* by P}

[3] who considered inifinite population size EA model irand O}, respectively.

R, without crossover. We also investigate to what degree theln this contribution we consider only a fithess-proportiona

I. INTRODUCTION



initialize(P")
while not stop condition satisifed
foreachie1,...u
generate random valueU (0, 1)
if ¢ < pe
j:=select point number fromi(.., u)
k:=select point number fromi(.., )
z = crossover b}, Pf)
O! = mutate &)
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j:=select point number fromi(.., u) S
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O; = mutate ;) o
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Fig. 1. Outline of the Evolutionary Algorithm under congidion $ Ny
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Mutation consists in adding to the mutated chromoseme
a random correction vectal, which results in a new poing

P,(i,t) =

Fig. 2. Trace of the EA - set of points generated in a single &A r

y=x+d (2) relatively compact clusters. This characteristic patigin fact
. . . observed regardless of the fitness function (and appears eve
We assume that the vectet is an n-dimensional normal for constant functions), but its shape details, e.g., canmess
random variable, so the probability density function (P)d. of clusters, is fitness function dependent.

of the mutation vector is We can observe that clusters of points contained in pop-
Fm(d) = Go.c,, (d) 3) ulat?qns in Consecuti_ve gene_rations_tend to remain in atabl
positions for long periods of time. Incidentally, a longtdisce
where shift of the population cluster may also be observed. Thus we

1 1 T e can explain that the clusters in the EA trace are the effect
Gm,c(x) = @mnz|cfiz P (_§(X_m) ™ (x— m)? of slow shifts and incidental jumps of a cluster of points
(4) which represents population contents. In the followingt tex

stands for the Gaussian function — p.d.f. of the normale attempt to investigate phenomena which lead to cluster
distribution with the expectation vectan and the covariance formation and we also try to explain the way in which the

matrix C. cluster moves in the search space.
Note that if the mutation distribution is given by (3), it
is always possible to normalize the space of chromosomes. Il. SAMPLING DISTRIBUTION

Observe that when we decompose the covariance matgix
into the diagonal matrix of eigenvalués, and the matrix of
eigenvectords,, such that

EA generates points in a randomized way, and we can
describe the EA action by defining the p.d.f. of the sampling
distribution which defines possible position of each pomt i
Ly, = E;,,'CpEn, (5) the populationOt; denote the p.d.f. of this distribution by
fs(t). In other words, populatio®’ is a p-fold realization

then in the space of vectors . : .
P of a random variable whose p.d.f. f5(¢). In this section we

y=FE,x (6) attempt to definefs(¢) for certain popular EA types.
mutation is Gaussian with zero mean and covariah@ghere
I is the unit matrix). A. No crossover
If there is no crossover, each point D! results from

B. Trace of the generated points mutating a point selected from?.

After an EA is started with some initial populatid?, it
generates points according to rules given in Fig. 1. When we fs(x,t) = E{Py(z,t)fm(x —2)}dz @)
plot all points that have been generated by the single ruheof t Rn

EA, we will observe a characteristic pattern — an EA tracevhereP;(z,t) is the probability that a point will be selected
Let us draw the EA trace for an example fitness functioto reproduce when the population contentis f,, is the
Trace of points generated in the single EA run is depictgdd.f. of the mutation distribution, and the symto{-} means
in Fig. 2. Observe that points tend to form a number dhe expected value over all possible contents of the papualat



Pt. Observe that each points frofd* is a realization of a  Thus we can see that the first term of the convolution is a

random variable whose p.d.f. j§(t — 1). Gaussian function with the mean equalﬁ%ﬁf““

If the population size increases, and the average fitneas vay g the variance equal ;\é/vt;l After convolution we get
of points from the populatiod®? is quite high, the selection e

probability becomes well approximated by fs(@it) = B G, , 0, () (19)
- q(z) where
Ps(z,t) = ——————— (8) _ .
(=) nEy, -1 {a(x)} Bt = Atexp (_%) (20)
2(Vi +vi—1
where Ey ,_1y{q(x)} is the expected value of the fitness of ( e=1.4)
points generated from the sampling distribution whosef.p.d‘?m
is fu(t—1). - Vimg_15 + Mive_1; 21)
Putting P, (8) instead ofP;, in (7) we get an approximate ’ Vit vi1
formula for f, v =1+ _ Vo (22)
(7). (20~ 1) e
[s(x,t) = me(x —z)dz (9  InFig. 3 we plot example curves fan, ; andv, ; for M; =
R™ 2ui=1,.p 0 andV; = 5. It can be readily seen that these curves stabilize
and quite fast in valuesn i, = my; = Mi, Vi1, = Vi =
(x.1) ~ A ) fm(x —2)d 10) Vi- SO the stable mean and variance values of the sampling
fs(x,) Rn Ja(2, ) fm(x — 2)d2 (10) distribution are
where ms,; = M; (23)
fa(x,t) = q(x) fs(x,t — 1) (11) b LTIV (24)
MT T
and . . , .
; 1 b) Correlated Gaussian fitnesdf the fitness function
A (12) s correlated Gaussian with the mean vecld and the

Ee i b'¢
1Ef ¢-nia(x)} covariance matrix’, then the stable sampling distribution will

Thus we obtain a recursive formula that allows to predigfe also correlated Gaussian with mean values equel.tdhe

future possible sampling distributions. correlation matrixC;, of this stable sampling distribution can
a) Uncorrelated Gaussian fitnesd.et us assume that be computed after performing the decomposition of the matri

the fitness function is uncorrelated Gaussian; Wthand V. C, into eigenvectors and eigenvalues:
denote its mean vector and variance vector, respectively. I —E-C.E (25)

Note that the product of two uncorrelated Gaussian func- a7 Ta e
tions is also an uncorrelated Gaussian function, the sards hovhere L, is the diagonal matrix of eigenvalues, aif} is
for the convolution. Thug;(¢) is uncorrelated Gaussian. Withthe matrix of eigenvectors — a new base of the search space
m; andV; denote the mean vector and the variance vectahere the fitness function becomes uncorrelated Gaussian. |
of f,(t). Note that, since we deal with uncorrelated Gaussidnat space, matrix, is the covariance matrix. We can then
functions, each dimension can be considered separatefyelnuse the formula (24) to obtain the variance matkix of the
i-th dimension, application of the formula (10) leads to stable sampling distribution:

fs(xi7 t) = At [G"71t—1,i~,vt—1,i (xl)GMle (xl)] * GO,l(xi) L’ = (1 + \% I+ 4L‘1=ii)/2 wheni :j (26)
(13) 54 0 otherwise
where %’ is the symbol of convolution. So, the covariance matrik'; of the stable sampling distribu-
In the subsequent transformations we omit indexesd: tion can be obtained by the retransformation of the maljx
for better readability. into the original coordinate system:
_ /
G (@) Gary (z) = (1) Cs = EqL, (27)
2 2
v exp <_ (d—m)* (d—M) ) — (15) B. Crossover
2m)VoV 2v 2V

) ) ) ) When crossover is used, two points which have been se-
exp <_d —2dm+m*)V + (d” — 2dM + M )“) _ lected to reproduce undergo recombination and yield a point

2V which is further modified by the mutation. #f. = 1 then the
(16) p.d.f. of the sampling distribution is defined as

exp (_ d®2(V +v) — 2d(Vm + Mv) + Vm? + M?v

Vo = fs(x,t) = - fo(z,t) frn(x — 2)dz (28)
(7 where f, is the p.d.f. of generating a point as a result of
G v ﬁ)(x) exp (_M> (18) crossover. Different crossover methods are charactetyed
VEU Ve 2(V +v) different functionsf,.
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Fig. 3. Evolution of mean and variance of the sampling dostion according to equations (23) and (24)

C. Arithmetic crossover With ¢ increasing, mean and variance of the sampling distri-

We assume that the arithmetic crossover consists in ggH—t'on tend to stabilize at level

erating pointz = (x + y)/2, wherex andy are parental o (36)
chromosomes. Thus the p.d.f. of generating a point as atresul Msyi = M

of crossover is (Vi —2)2 416V, — (V; —2) (37)

Vs,i = 4

=(X,t) = E{Ps(z/2,t)Ps(x —2z/2,1)} dz 29 ] o ) )
fa(x:1) Rn {Palz/2 )P /20 (29) When the fitness function is correlated Gaussian, coroglati

matrix of the stable sampling distribution can be obtained

¢) Uncorrelated Gaussian fithes#issume first that fit- using the eigenvector based method discussed for the no
ness function is uncorrelated Gaussian, and its mean anang 9

variance vector aréMl and V. Since the mutation p.d.f. is crossover case (in paragraph lIl.A.c).
uncorrelated Gaussian either, we expect thét) is Gaussian

again. The formula forf, (¢) is : . :
D. Generalized arithmetic crossover

fz(x,t) = / E{fy(z/2,t)fs(x —2/2,t)} dz (30) A more generalized case of the arithmetic crossover cansist
R in generating pointz = ax + (1 — a)y, wherex and y
Assuming large enough population, (30) can be rewrittéife parental chromosomes, andis a the averaging factor
as: whose value is a random variable with a certain distribution
Typically, a is drawn from a uniform distribution from the
fo(x,t) = A / fq(2/2,8) fo(x — 2/2,t)dz (31) range (0,1), or, in a more general case, from a rdrdel+b),
Rn whereb is a user-defined parameter.
where A? is a constant which makes (31) a proper definition Assuming large enough population we obtain approximate
of the p.d.f. Thusf,(t) is uncorrelated Gaussian with mearformula for f:

vectorm, and variance vectov, given by -

Vimy_1,i + Mive_1 fo(x,t) ~ A / folaz,t) fo(x — (1 — a)z,1)dadz
My i = : : (32) nJ—b
' Vitvi—1, (38)
Vpi = Vive—1.i/ (2(Vi + vi_14)) 0 (33) Wwhich can be combined with (28) to obtain the p.d.f. of the
sampling distribution.
Putting (32) and (33) into (28) we obtain If f, andq are uncorrelated Gaussian functions then
o Vimya i + Myvea 146
S Y (34 L) = A [ Gy (x)da (39)
Vive—1,i -0
v =14 02— (35)
2(Vi +ve-14) where A? is a constant which allows to use (39) as a proper



definition of the p.d.f., and

 Vimya i+ Mive—q

a,i 40

Ma, Vi+vi—1, (40)
Vivei—1,4 0

wi=(2(a—1/2)2 +1/2) 1= 41 < -

va,i = (2(a /)+/)%+vt_1,i (41)

Observe that the value of:,; is independent of;, so the
integral (39) defines a mixture of an infinite number o
Gaussian functions whose expected value is identical, at
the variance is a function of. It seems that (39) has no &
compact analytical form, and in particular, it is not a Géuss
function any more. Still we can operate on moments of thg
distribution whose p.d.f. is given by (39). Observe that if
a mixture of Gaussian functions with identical expectation
is considered, the expected value remains is identical o th
mixture elements, and the variance is the weighted averfige o
variances. Therefore we get

.0

ng distribution)
2

table
15

1.0

V (fitness function)

Vimy—1,i + Mive_1;
Myi =

(42)

Vi + Vt—1,i Fig. 4. Variance of the stable distribution vs. variancehsf fitness function
1+b Vivs_1 for the EA with Gaussian mutation and no crossover (black)limrithmetic
Vp—1.i - ; . . . i
Vg i = / (2(a - 1/2)2 + 1/2) ‘/17'161@ = (43) crosioverls;zlyc T 1 (red line), and generalized arithmetic crossoves, =
b i T U1, 1,b = 0 (blue line)
Vive—1
2(0° + (b+ 1)) gttt (44)

(Vi + ve-14) E. Uniform crossover

wherem;_, andv;_, are vectors of mean and variance of the Another popular method to perform crossover is to ex-
sampling distribution when the population content®is'.  change genes between parents. Let us analyze results of

Combining (42) and (43) with (28) we obtain such crossover method on the distributigp. Note that a
point z = (z1,22,..,2,) resulting from the crossover of
Mt = Mg (45) parentsx = (z1,z2,.,z,) andy = (y1,y2,.,yn) IS @

2 (6% 4+ (b+1)3) Vive—1,
3(Vi +ve1)

combination ofn genes that are taken from parents, and for
eachi, either z; = xz; (with probability 0.5) orz; = ;.

If both points under crossover are generated from the same
With ¢ increasing, mean and variance of the sampling distiandom variable whose p.d.f. i (¢t — 1), then the p.d.f.

v =1+

(46)

bution tend to stabilize at level of the joint distribution of points generated by the crossov
can be obtained by multiplying marginal distributions oé th
Mms,; = M; (47) productf,(x,t). With f|;) denote the p.d.f. of thén — k)-
_ h+Vh?2+4V; 48 dimensional marginal distribution, when the p.d.f. of tbij
Vsyi = 2 (48) distribution is f. The marginal distribution is characterized
(2,3 3 by the vectorl(k) € V(n,k) whereV(n, k) is the set ofk
h= <§ (0" + (1 +0)°) = 1) Vitl (49) " element variations without repetitions over the $ét..,n}.
Thus
In a typical case, wheh = 0, formula forv; ; is simplified to Fhiey(x) = /Rk FO)dzyry, - - daipy, (51)
In addition, define the complement vectdt(k)) = {1,..,n}\
: —3)? Vi— (Vi — . L s o
Vs, = (Vi —3)" + 26 ( 3) (50) 1(k) as a vector of indexes that are missing in the vehtby).
We can definef,, in the following way
When the fithess function is correlated Gaussian, corogiati gt " on
matrix of the stable sampling distribution can be obtained /) Ja(x, ) % AL = p)" 4 2") o (0 1)+ (52)
using the eigenvector based method introduce for the no ‘¢ o .
crossover case. Y > @a-pterrta-pt)  (53)
To better understand the role of the arithmetic crossover, *=! lRI€V(n.k)
let us study Fig. 4 in which stable levels of the sampling Faliry (x,8) falcaqry) (%, )+ (54)

distribution variancey, ;, obtained for an uncorrelated Gaus- 1 v n—v | n—v y

sian fithess function, are plotted for various values of the §Oddn)1 g (p (I=p) (1 —p) ) (55)
fitness function varianc¥;. For the sake of comparison, stable W)V ny)

variance for the EA with no crossover is also provided. Jaho) (%, 8) falcaqy) (%, 1) (56)



TABLE |
COVARIANCE MATRIX OF STABLE DISTRIBUTION FOR VARIOUS VERSIQNS
OF CROSSOVER

crossover type stable covariance matrix spread

no crossover [2.929,0.592; 0.592, 1.448] | 3.891

arithmetic [1.607,0.172;0.172,1.178] | 1.864 s o
generalized arithmetich = 0 | [1.947,0.277;0.277,1.255] | 2.368

uniform [2.964,0.296;0.296, 1.533] | 4.457

wherev = [n/2], and oddn) returns 1 ifn is odd, and 0 & © -
whenn is even.

Observe that when the fitness function is uncorrelated
Gaussian thenf,(x,t) is also uncorrelated Gaussian and
fq(X,t) = fq|l(k)(xvt)fq|c(l(k))(xvt) forall k =1,..,n—1. ¥ 4
Then

-2

fz(X7 t) ~ o E{fq(zvt)}dz (57) . ; T T T T T

and formulas (23) and (24) will apply for the mean and the e 0 ? ! °
marginal variance vectors.

If the fitness function is correlated Gaussian, thfe(x, t)
becomes correlated Gaussian, which may result in a cagtelakig. 5. Lines of equal p.d.f. value which encircle areas whgmobability of
Gaussian/, (x, t). Compact formulas for the evolution offr8E e L Een o 8 O e meesover (magenta)
covariance matrix are hard to define in a general case, how uniform crossover (green); in all cases, Gaussian rontit applied; for
it is quite straightforward to observe that formula (56) lwilthe sake of comparison, one of the isolines of the fitnesstifimds plotted
produce a mixture of Gaussian functions such that, at least f
some of them, axes of elipsoids of the sampling distribution
p.d.f. will not be parallel to axes of elipsoids of identigalues I1l. WHEN THE POPULATION IS SMALLER THAN INFINITE?

OI tbhle fltnes? fund(?tl;)nt; l;lote "’_‘:ls?a that thftmfﬁn vec{g(;nof 4|n the preceding section we considered equations that define
stable sampling distribution will be equal to the position Oyeaan vector and covariance matrix of a stable sampling

the fitness maximum. distribution provided that the fitness function is Gaussiad
the population is large enough to neglect the influence of

x1

F. Discussion a single individual’s fitness on the sum of fitness used in
Consider an example fitness function which is Gaussidie denominator of the expression (8). In this section we
with mean vectorM = 0 and the covariance matri€ = investigate the stable sampling distribution of indivibughen

[6,2;2,1]. In Tab. I, covariance matrices of stable samplinie population is small and the aforementioned approxanati

distributions are provided. In Fig. 5, a graphical prestoa is bold.

of the covariance matrices from Tab. | is given. We plot equal

value lines of the p.d.f. of the stable sampling distribatio

characterized by covariance matrices. Inside ellipses@ed

with these lines, probability of generating a point is geeéitat ~ In statistics, sample size of the size 100 is usually big

0.994. To indicate the shape of the fitness function, we plenough to perform statistical analysis. We assumed that the

one of its isolines. All ellipses, except for one corresgongd population sizg: = 100 can be regarded “practically inifinite”

to the uniform crossover, have their axes parallel to axes &fid we tested if the empirical distribution of points getedla

the objective function isoline. Area of the elipses is difiet by the EA was consistent with the distribution predictedhwit

and is smallest for the standard arithmetical crossover. tWee use of the infinite population size analysis.

better characterize covariance matrices, define the spead We use the Gaussian fitness functionfih with zero mean

the covariance matrix as the product of its eigenvaluessThuector an the covariance matrix equal [&2;2,1] — just

spread is proportional to the area of elipse which contaittsee same function that was used to compare spread of the

99.4% of points that will be generated according to the p.dgopulation under various crossover methods. We initidlize

of the sampling distribution. Spread values are given in tise population with the uniform distribution in the box

third column of Tab. I. [-5,5] x [-5, 5], and we let the evolution last for 500 gener-
So we can say that if an arithmetic crossover scheme is usgbns. Then we took chromosomes from generations number

which consists in weighted averaging of parents, then @epull01 up to 500 (which makes 40000 chromosomes in total) and

tions are more compact than in case when no crossover is useel.used all these chromosomes to estimate mean vector and

On the other hand, application of the uniform crossoverltesucovariance matrix for each version of the EA. The results are

in partially decorrelated sampling distribution, whosdethin  presented in Tab. II.

the considered example results in the stable distributibose A very good consistency can be observed between the

spread is greater than for the case with no crossover. covariance matrix values that have been predicted using the

A. Stable distribution of large populations



TABLE Il
COVARIANCE MATRICES OF STABLE DISTRIBUTIONS FOR DIFFERENT
VALUES OF CROSSOVERMATRIX COEFFICIENTS WERE ESTIMATED FROM
THE EXPERIMENTAL DATA

crossover type stable covariance matrix

no crossover [2.964, 0.605; 0.605, 1.453]

arithmetic [1.624,0.182;0.182,1.192] <
generalized arithmetich = 0 | [1.98,0.287;0.287, 1.254]

uniform [2.798,0.267; 0.267, 1.440]

oretical considerations and estimated from the experiatent
data.

selecin probability

B. Stable distribution of small populations

In equation (8) we assume that the influence of the indi-
vidual's fitness on the sum in the denominator is neglible. In " : : : : ‘
fact, if we assume that all individuals are generated froe th 0.00 0.02 004 006 0.08 0.10
random variable whose p.d.f. i§(t — 1), then the selection
probability of an individuakz equals

fitness

q(z) (58) Fig. 6. Proportion ofPs(x)/Ps(x) as a function of the individual's fitness
q(z) + (n — 1)anfS(t71)7u71{Q(X)} for the population sizeu € {2,5,10, 20, 50,100}; curvature of the line
grows with the population size decreasing

Py(z,t) =

where avg ;) ,1{q(x)} is the average value of — 1
points generated with the distribution whose p.d.ffig —1). TABLE Il

. . . o . COVARIANCE MATRIX C' OF THE STABLE SAMPLING DISTRIBUTION
Note that the selection probability of an individual is & gstimatED FROM EXPERIMENTS FOREA WITHOT CROSSOVERFOR
random variable in contrast to its approximation, which is DIFFERENT POPULATION SIZEu
a deterministic value. Relation between the actual selecti

probability and its approximatioﬁ’s(z, t) (cf. (8)) is given by ’2‘ (2102, 7.04 704 463

P (2,1) 5 [4.55, 1.27; 1.27, 1.77]
Py(z,t) = 5\ 10 | [3.17, 0.67; 0.67, 1.53]
’ q(z) n (1 _ 1) avgr -1, {9(x)} 20 | [2.96, 0.61; 0.61, 1.43]

pEf t—nia(x)} M

Er ti-1{a(x)} 50 | [2.93, 0.58; 0.58, 1.43]
(59) | 100 | [2.94, 0.59; 0.59, 1.45]
For small populations, the discrepancy between the actual
and approximated selection probability may become quite
large due to the term — 1/ in the denominator of (59). each value from that range, 10000 simulations of the remgini
Term#i){q(x)} in the denominator of59) is responsible pppulation members were made. The results are plotted in
for reducing the selection probability for best fit indivals, Fig- 6.
and increasing the selection probability of poorly fit ones. To illustrate the effect of reducing the selection pressune
This will effect in reducing the selection pressure, and tHBcreasing sampling distribution spread for small popatet,
degree of reduction is inversely proportional to the popoie  We ran EA with no crossover for several different values ef th
size ;. Thus we conclude that for small populations, spredtPpPulation sizg.. Each EA run generated 500 populations, and
of the sampling distribution should be greater than fordargV® computed covariance matrix using last 400 generations.
populations. Obtained results are presented in Tab. IlI.
We illustrate the aforementioned effects for the Gausstan fi SO we conclude that for the fitness function under testing,
ness function with zero mean and covariance magiz; 2,1].  €ven for rather moderate population sjze= 20, covariance
We consider EA without crossover. If we assume that tHgatrix of the sampling distribution is well approximatedthy
sampling distribution is a stable one (computed with the u§@variance matrix obtained with the use of infinite popofati
of the approximated formula for the selection probability® size model. In addition we observe that smaller populatioa s
can use the stable p.d.f. in the formula (59). Thus we céfeed results in wider spread of the sampling distribytam
observe what will happen with the selection probability an@@radoxically, increase of the explorative power of the BA ¢
in the same time we can predict whether the approximati§§ obtained by reducing the population size down to even less
of the stable distribution will be close to the current one (jthan 10 individuals.
that case, we would see that the proportiéniz, t)/ P, (z, )
is almost one) or the approximation is too bold to believe it. IV. ABILITY TO FIND GLOBAL MAXIMUM
We estimated selection probabilities by making simulation If the fitness functions has many local maxima and the goal
of the population contents with the use of the approximatias to search for the global maximum then the spread of the
to the “stable” distribution. Fitness of the first individwaas sampling distribution plays the key role in attaining thelu!
changed in the rang®, .., 0.1125] with a step 0.00125, and for maximization task. Points from the current population ligua




form a cluster whose position in the search space tends to
stabilize for a number of generations, i.e., the mean vafue o
the point position oscillates around a certain “stable’ueal
This tendency appears when the fitness function is locally
concave, and stabilization may take long when the popuiatio
is little diversified so that probability of generating ptEn <
inside this locally concave area is high.

If the fitness function is symmetrical about the local max-
imum in its neighborhood, then the “stable” value of the,
population mean is simply the position of the local maximum.

A way in which the population may change its position is «
to go from the attraction basin of the current local maximum
to the attraction basin of another local maximum in the ¥ -
neighborhood of the current one, so that the “stable” value o
the mean position of points changes its position to the iticin '
of another local maximum. This phenomenon is known as . ; ; ; ; ; ;
“saddle crossing”, although it is not always the case that th -6 -4 -2 0 2 4 6
transition of the population goes through the saddle point. "

Saddle crossing is more possible when the probability is
increased of generating a point outside the attractiombafsi
the current local maximum. Moreover, if the aforemention
probability is too low, saddle crossing will not be observed
in practice and the neighborhood of a current local maximum
will trap the population for good.

When a realistic fitness function is maximized, a good
strategy is to keep the saddle crossing ability on a reason-
ably high level which in turn implies keeping the sampling ©
distribution with wide enough spread. However if this sprea
were too wide, it would result in poor ability to find a local
maximum. So, sampling distribution spread should be a good _
compromise between the ability to stabilize for a number :
of generations (exploitation) and the ability to cross $esld ¢ o -
(exploration). The problem with attaining this compromise
its assymetry — if the spread is too high, EA behaves like %
a blind search but is still able to find an approximation to
the global maximum, but when the spread is too small, EA '
looses its global optimization properties and reduces &dteer ©
ineffective stochastic local optimizer.

6
|

G{a’)g. 7. Contour plot of the fitness function under consideratand the
rderline between the attraction basins of the global haddcal maximum

A. Sampling distribution spread and the saddle crossingr abi
ity

Let us illustrate the above considerations with an example _ _ .
fitness function inR? given by the sum of two Gaussian /9: 8- Al points generated by a single EA run vs. contouesirof the
f fi fithess function; see text for the details
unctions

Q(X) = Gml,Cl(X) + GmQ,CQ (X) (60)

In our example we assuman; = [-2,2],C; = to generate points outside the attraction basin of the local
[6,2;2,1],my = [2,-2],C2 = [1,—1;—1,4]. Contour plot maximum in order to approach to the global one. The set
of the fitness function is given in Fig. 7. Global maximum i®f all points that have been generated by the EA is depicted
located in the vicinity of the poinin;, and the local maximum in Fig. 8 It can be observed that generated points indeed form
is observed nearby,. The saddle point is approximately [0.8 clusters whose centers are located about both maxima of the
1.6]. fitness function. Deeper insight into the population shdwes t
We ran the EA with the proportional selection, no crossovehe population periodically stays about either global aralo
and Gaussian mutation. Population size was equal to 1@@aximum of the fithess function. This effect is indicated. e.g
a unit correlation matrix of the mutation was used, and th®y the plot in which coordinates of mean values of points
algorithm was stopped after 500 generations. Initial papulcontained by consecutive populations are plotted as aiumct
tion was generated as clones of the pdiht—2] where the of the generation number (cf. Fig. 9). In the considered EA ru
fitness function takes its local maximum. Thus, EA needgmbpulation is closer to the local maximum in generations 1-



mean(x1), mean(x2)

-2

a)

Fig. 9. Coordinates of the point being the mean of all poimstained in
generation numbet: black circles — coordinate; and red bullets — coordinate
x2; plot was obtained for the run whose trace ofpoints is givefrig. 8

100. A clear attraction by the global maximum can be observed <« -
in generations 200-500. Occasionally, population driftsHer
from the maximum around which it has stabilized. One of
such drifts resulted in transition between the local andagllo
maximum, which took place in generations 130-180.

In each period when the population is attracted by a global
or local maximum for a time longer than just few generations,
the population can be treated as if it has been generated from
a random variable with the p.d.f. which does not vary over
time. This p.d.f. can be derived using formulas (23) and (24)
where the fitness function is reduced to a single Gaussian ter
of the sum (60) which introduces either the global or thelloca % -4 -2 0 2 4 6
maximum.

Consider EA for which we observed transition of thd)
population between the atraction basins of both minima. In ) ) )

Fig 10a), elipses associated with the local or the glob':I  10.  Lines of equal p.df. that encircle sets where poimbuld be

; . . e nerated with probability 0.994 if the fitness function evegual to a single
maximum are plotted. Each ellipse is the isoline of the stabbaussian term of the sum (60);pa)= 0, b) arithmetic crossovep. = 1
p.d.f. which encloses points that generated with proksbili
0.994 (a 2-dimensional version of thes3ule”). Observe that
both ellipses encircle area contained by the attractiomhzs the mean point of the population was contained in the 4th
the other maximum of the fitness function. Thus, it is possibfjuarter of the coordinate system, which would indicate that
for the population to perform the saddle crossing. the saddle crossing took place. In addition, we started EA

In the other case, when no such overlapping takes plage,the global maximum to see if the opposite direction of
saddle crossing is practically impossible (although theor the saddle crossing is possible, and again the negativé resu
ically is still expected with a very small possibility). Towas obtained, although in that case some points from the
confirm this intuition, we ran the EA with identical settingsattraction basin of the local maximum are contained in the
as previously, but using the arithmetical crossover which 10.994 ellipse” associated with the global one.
performed with probability. = 1. Lines of equal p.d.f. value For both cases under comparison, i.e., with and without
which encircle points accessible with probability 0.994 ararithmetical crossover, we computed covariance matrix of
plotted in Fig. 10b). It appears that the ellipse associattl  stable distributions derived for an infinite populatiorsw@asing
the local maximum does not overlap the attraction basin®f tthat the fithess function contains only a single Gaussian,ter
global maximum, so saddle crossing can hardly be expectadsociated with the local or the global maximum. We also
Indeed, in 500 independent runs, when the population wastimated the covariance matrix taking points generatetidy
started from clones of point [2,-2], we observed no case whei from periods where the population seemed to be stabilized
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TABLE IV
COVARIANCE MATRIX VALUES ESTIMATED FROM THE EXPERIMENTAL
DATA WHEN THE POPULATION REMAINED QUASFSTABLE ABOUT A
SINGLE LOCAL MAXIMUM OF THE FITNESS FUNCTION(60); ‘L’ AND ‘G’
STAND FOR PERIODS WHEN POPULATIONS ARE STABILIZED AROUND TH
LOCAL OR THE GLOBAL MAXIMUM , RESPECTIVELY.

0.110

theor. estim.

[1.71, -0.53; -0.53, 3.13] [1.66,-0.39;-0.39,2.76]
[2.93, 0.59; 0.59, 1.44] | [3.85,-1.26;-1.26,3.34]
[1.25, -0.10; -0.10, 1.54] [1.27, -0.10; -0.10,1.60]
[1.61,0.17; 0.17,1.18] | [1.66, 0.14;0.14,1.20]

()

[l akeX ek

0.105
1

«Q T T

quality after 200 generations

0.100
1

NN

I
around only one maximum. In Tab. IV we compare thesg, \
covariance matrix values. For the comparison we took resulg
from a single EA run. It can be observed that the estimated
results are much better consistent with predicted for alesing

Gaussian term when no saddle crossing took place. It seemss L, ‘ ‘ ‘ : : :
that the population diveristy is too small to “see” anytheige 0 50 100 150 200 250 300
but the local concavity of the fithess function. This defilyite
confirms the intuitions formulated in the previous text and i

Fig. 10b). On the other hand, when the population dlverSIHg. 11. Average fitness of the best point obtained for diffiérpopulation

becomes sgfficiently Iargg, sampli.ng.dis_tribution _spread _hsize valuesy, for the crossover probabilitp. changed gradually from O
much less in common with the distribution predicted usin@pper line) to 1 (lower line)

unimodal, concave local approximation of the fithess fuorcti

0.095
1

90

population size

_ _ 3 the algorithm withy = 300 which used 60000 points. Thus,
B. Small populations and the saddle crossing ability if the stop criterion were set on the number of fithess fumctio

As we a|ready mentioned before, prediction of the Spre&daluations rather than the number of generations, then the
of the sampling distribution based on the infinite populatiosuperiority of the small population over large populatiooutd
size model becomes underestimated when the population difemuch better visible.
decreases. This can have an interesting consequence for tHd l0ok at the set of points generated in a single EA run
Sadd'e Crossing ab|||ty, Wh|Ch can be increased by reducimicates a SubStantial diffel’ence in EA behaViOI’ for Sma”
the population size. and large populations (see Fig. 12).

To observe this effect we ran the EA with Gaussian mutation!n the case of a small population, the population is more
defined by the unit covariance matrix, arithmetic crossovigxible and it is quite probable that the saddle crossing wil
with probability from the setp. € {0,0.1,...,1}, and the appear, |.e.,§1ll |nd|V|FiuaIsfrom the populg‘uon will mtqovyn
population size from the range € [2,300]. The algorithm N the attraction basin of the global maximum. Certainlys th
was initialized with clones of the local maximum of theseéttlement will be not for good, and one can expect that if the
fitness function, and the algorithm was run for 200 genenatio Simulation is long, the population will oscillate many tige
For each value of the population size we performed 100 Petween the local and the global maximum (cf. Fig. 12a).
independent runs of the EA and in each run, we computed thé/Vhen the population size grows, it becomes less flexible,
fitness value of the best point found in that run. The averag@d the saddle crossing is less probable. This does notdexclu
of the best point found in 100 independent runs can be treaR@FSibility for a point to approach the whole neighborhood
as an indication of the saddle crossing ability of the EA, ar®f the global maximum, but rather rarely the population
in the same time, as an indicator of the EA robustness agaif$f cross the saddle. Points which are distant to the local
premature convergence. In Fig. 11 we provide obtainedtesuaximum can be interpreted as results of'macromutatlons —

We can see a surprising pattern — average fitness of the JBsf9- 12b), only a few of them were luckily located nearby
point tends to decrease withincreasing, it takes its minimum the point[—2, 2], but they did not succeed to attract the whole
for moderate size populations, and then increases. When Bgpulation.
crossover probability is small, large populations & 50)
perform slightly better than very small ones & 5). With V. CONCLUSIONS
pe increasing, even population with hundreds of points doesWe provided a discussion of the saddle crossing property
not perform as good as a very small one. It seems that A an evolutionary algorithm. Rather than consentrating on
which processes small populations is much less sensitivethe diveristy of current population, we considered covaréa
improper settings of parameters resulting in too smallagpad  matrix of the sampling distribution which defines the looati
the sampling distribution for very large populations. Ibald of points generated by the EA.
be stressed that all algorithms under comparison were stbpp We showed that when a Gaussian fitness function is con-
after 200 generations, so e.g. when= 1, the algorithm with sidered, it is possible to compute an approximate form of
= 2, after examining 400 points, obtained better result thahe stable distribution which stays in a good agreement with



tion

on the spread of the sampling distribution which allows more
freedom in choosing the crossover and mutation method.
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Fig. 12. Sets of points generated in 200 generations of an ERasithmetic
crossoverp. = 0.8; population size was set to @)= 5 and b)u = 100

the experimental evidence. We also gave arguments that the
estimated covariance matrix of the sampling distributien i

a lower bound of the covariance matrix observed in the
experimental data, and the approximation becomes quitd goo
even for moderate population size.

When the fitness function is the sum of Gaussian functions,
then it is possible to compute, for each Gaussian term of the
sum, the p.d.f. of the stable sampling distribution as if the
fitness function equal to that single Gaussian term. Thgiate
of the aforementioned p.d.f. over the attraction basin otlaer
local maximum is the probability to cross the saddle by a
single point. Thus, if the integral is approximately zeraddle
crossing will not appear in practice.

We indicate that a possible way of coping with this problem
is to reduce the population size. Moreover, when the popula-

is small, ability to cross the saddle becomes less temsi
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