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Abstract—

I. I NTRODUCTION

In this contribution we discuss the ability of a generational
Evolutionary Algorithm (EA) inRn to perform task of finding
attraction basins of local maxima of the fitness function, ina
hope that one of these maxima is the global one. It has been
reported by many authors, e.g. [4], that in consecutive EA gen-
erations, individuals form relatively compact clusters, whose
middlepoints drift in the search space. Moreover, dynamics
of the cluster middlepoint contains relatively long periods of
small changes which chaotically oscillate around a certain
“stable” position (stasisperiod), and relatively short periods of
rapid changes of the population middlepoint, whose direction
stays similar at least for few generations. Period of changeis
identified with thesaddle crossingphenomenon [2] , when the
population changes its position by going from the attraction
basin on one local maximum to the other, and on the way,
poorly fit points around the border of these two attraction
basins are generated and reproduced.

We approach to characterize the saddle crossing ability by
the analysis of the pattern in which points are generated in the
stasis period. EA generates individuals in a random way, so
we characterize the probability distribution of generating an
offspring individual when the population contents is known;
we call this probability distribution asampling distribution.
Analytical formulas for the sampling distribution have been
given by Qi and Palmieri [9], who considered proportional
selection, uniform crossover and Gaussian mutation, and
were extended by Nomura [8] for different version of linear
crossover. In the aforementioned results, the authors madethe
assumption about the infinite size of the population. We do
not make such assumption, since we are not much concerned
about the distribution of individuals in a single population but
rather about the set of points that are generated in multiple
generations of the EA in the period of stasis. We provide ap-
proximate formulas for the sampling distribution in the stasis
period assuming that the fitness function is correlated Gaussian
in Rn. The approximation follows from the assumption, that
the influence of a single individual’s fitness on the total fitness
of the population is neglible. We consider the case when no
crossover is applied, and when the crossover is uniform or
arirthmetic. Thus we enhance the results by Karcz-Duleba
[3] who considered inifinite population size EA model in
R, without crossover. We also investigate to what degree the

actual selection probability of an individual will be different
from the approximate selection probability we have used in
the formulas. We show that for small populations, current co-
variance matrix of the sampling distribution may significantly
differ from the approximated one, and the difference leads to
wider distribution of points generated by the EA.

For the considered Gaussian fitness function, the sampling
distribution is usually Gaussian (except for one type of
arithmetic crossover), and we characterize this function not
only with the covariance matrix, but also with the value of
spread, which is defined as the product of eigenvalues of
the covariance matrix. The intuition of the spread is the area
of the set which will be densely covered with points when
the EA is in the stasis period. Thus, spread is related to
the population diversity [5]. The difference between popular
diversity definitions and spread lies in the fact, that the
diversity measures are based on distances between individuals
in the population, whereas spread characterizes the probability
distribution of the random variable, whoseµ-fold realization
is the population contents.

Finally we consider a fitness function which is sum of two
Gaussian functions, one of them defining a local maximum,
and another one — a global one. We attempt to characterize
ability of saddle crossing assuming the “stable” sampling
distribution corresponding to one of the Gaussian terms, and
analyzing the chance to generate a point from the attraction
basin of the maximum defined by the other Gaussian term. We
perform experimental analysis of the saddle crossing process
and we show the influence of the population size on the EA
effectiveness in finding global maximum.

A. Evolutionary Algorithm

We consider a generational Evolutionary Algorithm (EA)
depicted in Fig.1. Chromosomes are vectors fromRn, n < ∞,
and q : Rn → R is the fitness function to be maximized
without any additional constraints. In each generation, individ-
uals are reproduced, crossed over and mutated, and the new
population of mutants becomes the base population for the
next generation. We assume that crossover takes two parents
and produces a single offspring.

Symbol µ stands for the size of the populationPt. We
denote thei-th element of the populationPt and Ot by P t

i

andOt
i , respectively.

In this contribution we consider only a fitness-proportional



initialize(P0)
while not stop condition satisifed

for each i ∈ 1, .., µ
generate random valuec̃ U(0, 1)
if c < pc

j:=select point number from (1, .., µ)
k:=select point number from (1, .., µ)
z := crossover (P t

j , P t
k)

Ot
i := mutate (z)

else
j:=select point number from (1, .., µ)
Ot

i := mutate (P t
j )

Pt+1:=Ot

Fig. 1. Outline of the Evolutionary Algorithm under consideration

selection where selection probabilities are defined as

Ps(i, t) =
q(P t

i )
∑

j=1,..,µ q(P t
j )

(1)

Mutation consists in adding to the mutated chromosomex

a random correction vectord, which results in a new pointy

y = x + d (2)

We assume that the vectord is an n-dimensional normal
random variable, so the probability density function (p.d.f.)
of the mutation vector is

fm(d) = G0,Cm
(d) (3)

where

Gm,C(x) =
1

(2π)n/2|C|1/2
exp

(

−1

2
(x − m)T C−1(x − m)

)

(4)
stands for the Gaussian function — p.d.f. of the normal
distribution with the expectation vectorm and the covariance
matrix C.

Note that if the mutation distribution is given by (3), it
is always possible to normalize the space of chromosomes.
Observe that when we decompose the covariance matrixCm

into the diagonal matrix of eigenvaluesLm and the matrix of
eigenvectorsEm such that

Lm = E−1
m CmEm (5)

then in the space of vectors

y = Emx (6)

mutation is Gaussian with zero mean and covarianceI (where
I is the unit matrix).

B. Trace of the generated points

After an EA is started with some initial populationP0, it
generates points according to rules given in Fig. 1. When we
plot all points that have been generated by the single run of the
EA, we will observe a characteristic pattern — an EA trace.
Let us draw the EA trace for an example fitness function.
Trace of points generated in the single EA run is depicted
in Fig. 2. Observe that points tend to form a number of
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Fig. 2. Trace of the EA - set of points generated in a single EA run

relatively compact clusters. This characteristic patternis in fact
observed regardless of the fitness function (and appears even
for constant functions), but its shape details, e.g., compactness
of clusters, is fitness function dependent.

We can observe that clusters of points contained in pop-
ulations in consecutive generations tend to remain in stable
positions for long periods of time. Incidentally, a long distance
shift of the population cluster may also be observed. Thus we
can explain that the clusters in the EA trace are the effect
of slow shifts and incidental jumps of a cluster of points
which represents population contents. In the following text
we attempt to investigate phenomena which lead to cluster
formation and we also try to explain the way in which the
cluster moves in the search space.

II. SAMPLING DISTRIBUTION

EA generates points in a randomized way, and we can
describe the EA action by defining the p.d.f. of the sampling
distribution which defines possible position of each point in
the populationOt; denote the p.d.f. of this distribution by
fs(t). In other words, populationOt is a µ-fold realization
of a random variable whose p.d.f. isfs(t). In this section we
attempt to definefs(t) for certain popular EA types.

A. No crossover

If there is no crossover, each point inOt results from
mutating a point selected fromPt.

fs(x, t) =

∫

Rn

E {Ps(z, t)fm(x − z)} dz (7)

wherePs(z, t) is the probability that a pointz will be selected
to reproduce when the population contents isPt, fm is the
p.d.f. of the mutation distribution, and the symbolE{·} means
the expected value over all possible contents of the population



Pt. Observe that each points fromPt is a realization of a
random variable whose p.d.f. isfs(t − 1).

If the population size increases, and the average fitness value
of points from the populationPt is quite high, the selection
probability becomes well approximated by

P̃s(z, t) =
q(z)

µEfs(t−1){q(x)} (8)

whereEfs(t−1){q(x)} is the expected value of the fitness of
points generated from the sampling distribution whose p.d.f.
is fs(t − 1).

Putting P̃s (8) instead ofPs in (7) we get an approximate
formula for fs

fs(x, t) ≈
∫

Rn

q(z)fs(z, t − 1)
∑

i=1,..,µ q(P t
i )

fm(x − z)dz (9)

and

fs(x, t) ≈ At

∫

Rn

fq(z, t)fm(x − z)dz (10)

where

fq(x, t) = q(x)fs(x, t − 1) (11)

and

At =
1

µEfs(t−1){q(x)} (12)

Thus we obtain a recursive formula that allows to predict
future possible sampling distributions.

a) Uncorrelated Gaussian fitness:Let us assume that
the fitness function is uncorrelated Gaussian; withM andV

denote its mean vector and variance vector, respectively.
Note that the product of two uncorrelated Gaussian func-

tions is also an uncorrelated Gaussian function; the same holds
for the convolution. Thusfs(t) is uncorrelated Gaussian. With
mt and Vt denote the mean vector and the variance vector
of fs(t). Note that, since we deal with uncorrelated Gaussian
functions, each dimension can be considered separately. Inthe
i-th dimension, application of the formula (10) leads to

fs(xi, t) = At[Gmt−1,i,vt−1,i
(xi)GMi,Vi

(xi)] ∗ G0,1(xi)
(13)

where ‘∗’ is the symbol of convolution.
In the subsequent transformations we omit indexest and i

for better readability.

Gm,v(x)GM,V (x) = (14)

1

(2π)
√

vV
exp

(

− (d − m)2

2v
− (d − M)2

2V

)

= (15)

exp

(

−d2 − 2dm + m2)V + (d2 − 2dM + M2)v

2V v

)

=

(16)

exp

(

−d2(V + v) − 2d(V m + Mv) + V m2 + M2v

2V v

)

=

(17)

G( V m+Mv
V +v

, V v
V +v

)(x) exp

(

− M − m

2(V + v)

)

(18)

Thus we can see that the first term of the convolution is a
Gaussian function with the mean equal toVimt−1,i+Mivt−1,i

Vi+vt−1,i

and the variance equal toVivt−1,i

Vi+vt−1,i
. After convolution we get

fs(xi, t) = BtGmt,i,vt,i
(xi) (19)

where

Bt = At exp

(

− Mi − mt−1,i

2(Vi + vt−1,i)

)

(20)

and

mt,i =
Vimt−1,i + Mivt−1,i

Vi + vt−1,i
(21)

vt,i = 1 +
Vivti

Vi + vt−1,i
(22)

In Fig. 3 we plot example curves formt,i andvt,i for Mi =
0 andVi = 5. It can be readily seen that these curves stabilize
quite fast in valuesmt+1,i = mt,i = mi, vt+1,i = vt,i =
vi. So the stable mean and variance values of the sampling
distribution are

ms,i = Mi (23)

vs,i =
1 +

√
1 + 4Vi

2
(24)

b) Correlated Gaussian fitness:If the fitness function
is correlated Gaussian with the mean vectorM and the
covariance matrixCq then the stable sampling distribution will
be also correlated Gaussian with mean values equal toM. The
correlation matrixCs of this stable sampling distribution can
be computed after performing the decomposition of the matrix
Cq into eigenvectors and eigenvalues:

Lq = E−1
q CqEq (25)

where Lq is the diagonal matrix of eigenvalues, andEq is
the matrix of eigenvectors — a new base of the search space
where the fitness function becomes uncorrelated Gaussian. In
that space, matrixLq is the covariance matrix. We can then
use the formula (24) to obtain the variance matrixL′

s of the
stable sampling distribution:

L′
s,ij =

{

(1 +
√

1 + 4Lq,ii)/2 when i = j

0 otherwise
(26)

So, the covariance matrixCs of the stable sampling distribu-
tion can be obtained by the retransformation of the matrixL′

s

into the original coordinate system:

Cs = EqL
′
s (27)

B. Crossover

When crossover is used, two points which have been se-
lected to reproduce undergo recombination and yield a point
which is further modified by the mutation. Ifpc = 1 then the
p.d.f. of the sampling distribution is defined as

fs(x, t) =

∫

Rn

fx(z, t)fm(x − z)dz (28)

where fx is the p.d.f. of generating a point as a result of
crossover. Different crossover methods are characterizedby
different functionsfx.
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Fig. 3. Evolution of mean and variance of the sampling dostribution according to equations (23) and (24)

C. Arithmetic crossover

We assume that the arithmetic crossover consists in gen-
erating pointz = (x + y)/2, wherex and y are parental
chromosomes. Thus the p.d.f. of generating a point as a result
of crossover is

fx(x, t) =

∫

Rn

E {Ps(z/2, t)Ps(x − z/2, t)} dz (29)

c) Uncorrelated Gaussian fitness:Assume first that fit-
ness function is uncorrelated Gaussian, and its mean and
variance vector areM and V. Since the mutation p.d.f. is
uncorrelated Gaussian either, we expect thatfs(t) is Gaussian
again. The formula forfx(t) is

fx(x, t) =

∫

Rn

E {fq(z/2, t)fq(x − z/2, t)} dz (30)

Assuming large enough population, (30) can be rewritten
as:

fx(x, t) ≈ At

∫

Rn

fq(z/2, t)fq(x − z/2, t)dz (31)

whereAt is a constant which makes (31) a proper definition
of the p.d.f. Thusfx(t) is uncorrelated Gaussian with mean
vectormx and variance vectorvx given by

mx,i =
Vimt−1,i + Mivt−1,i

Vi + vt−1,i
(32)

vx,i = Vivt−1,i/ (2(Vi + vt−1,i)) o (33)

Putting (32) and (33) into (28) we obtain

mt,i =
Vimt−1,i + Mivt−1,i

Vi + vt−1,i
(34)

vt,i = 1 +
Vivt−1,i

2(Vi + vt−1,i)
(35)

With t increasing, mean and variance of the sampling distri-
bution tend to stabilize at level

ms,i = Mi (36)

vs,i =

√

(Vi − 2)2 + 16Vi − (Vi − 2)

4
(37)

When the fitness function is correlated Gaussian, correlation
matrix of the stable sampling distribution can be obtained
using the eigenvector based method discussed for the no
crossover case (in paragraph III.A.c).

D. Generalized arithmetic crossover

A more generalized case of the arithmetic crossover consists
in generating pointz = ax + (1 − a)y, where x and y

are parental chromosomes, anda is a the averaging factor
whose value is a random variable with a certain distribution.
Typically, a is drawn from a uniform distribution from the
range (0,1), or, in a more general case, from a range(−b, 1+b),
whereb is a user-defined parameter.

Assuming large enough population we obtain approximate
formula for fx:

fx(x, t) ≈ At

∫

Rn

∫ 1+b

−b

fq(az, t)fq(x − (1 − a)z, 1)dadz

(38)
which can be combined with (28) to obtain the p.d.f. of the
sampling distribution.

If ft andq are uncorrelated Gaussian functions then

fx(x, t) ≈ At

∫ 1+b

−b

Gma,va
(x)da (39)

whereAt is a constant which allows to use (39) as a proper



definition of the p.d.f., and

ma,i =
Vimt−1,i + Mivt−1,i

Vi + vt−1,i
(40)

va,i =
(

2(a − 1/2)2 + 1/2
) Vivt−1,i

Vi + vt−1,i
(41)

Observe that the value ofma,i is independent ofa, so the
integral (39) defines a mixture of an infinite number of
Gaussian functions whose expected value is identical, and
the variance is a function ofa. It seems that (39) has no
compact analytical form, and in particular, it is not a Gaussian
function any more. Still we can operate on moments of the
distribution whose p.d.f. is given by (39). Observe that if
a mixture of Gaussian functions with identical expectation
is considered, the expected value remains is identical to the
mixture elements, and the variance is the weighted average of
variances. Therefore we get

mx,i =
Vimt−1,i + Mivt−1,i

Vi + vt−1,i
(42)

vx,i =

∫ 1+b

−b

(

2(a − 1/2)2 + 1/2
) Vivt−1,i

Vi + vt−1,i
da = (43)

2
(

b3 + (b + 1)3
) Vivt−1,i

3(Vi + vt−1,i)
(44)

wheremt−1 andvt−1 are vectors of mean and variance of the
sampling distribution when the population contents isPt−1.

Combining (42) and (43) with (28) we obtain

mt,i = mxi (45)

vt,i = 1 +
2

(

b3 + (b + 1)3
)

Vivt−1,i

3(Vi + vt−1,i)
(46)

With t increasing, mean and variance of the sampling distri-
bution tend to stabilize at level

ms,i = Mi (47)

vs,i =
h +

√
h2 + 4Vi

2
(48)

h =

(

2

3

(

b3 + (1 + b)3
)

− 1

)

Vi + 1 (49)

In a typical case, whenb = 0, formula forvs,i is simplified to

vs,i =

√

(Vi − 3)2 + 36Vi − (Vi − 3)

6
(50)

When the fitness function is correlated Gaussian, correlation
matrix of the stable sampling distribution can be obtained
using the eigenvector based method introduce for the no
crossover case.

To better understand the role of the arithmetic crossover,
let us study Fig. 4 in which stable levels of the sampling
distribution variancevs,i, obtained for an uncorrelated Gaus-
sian fitness function, are plotted for various values of the
fitness function varianceVi. For the sake of comparison, stable
variance for the EA with no crossover is also provided.
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Fig. 4. Variance of the stable distribution vs. variance of the fitness function
for the EA with Gaussian mutation and no crossover (black line), arithmetic
crossover,pc = 1 (red line), and generalized arithmetic crossover,pc =
1, b = 0 (blue line)

E. Uniform crossover

Another popular method to perform crossover is to ex-
change genes between parents. Let us analyze results of
such crossover method on the distributionfx. Note that a
point z = (z1, z2, .., zn) resulting from the crossover of
parentsx = (x1, x2, .., xn) and y = (y1, y2, .., yn) is a
combination ofn genes that are taken from parents, and for
each i, either zi = xi (with probability 0.5) orzi = yi.
If both points under crossover are generated from the same
random variable whose p.d.f. isfs(t − 1), then the p.d.f.
of the joint distribution of points generated by the crossover
can be obtained by multiplying marginal distributions of the
productfq(x, t). With f |l(k) denote the p.d.f. of the(n − k)-
dimensional marginal distribution, when the p.d.f. of the joint
distribution is f . The marginal distribution is characterized
by the vectorl(k) ∈ V (n, k) whereV (n, k) is the set ofk
element variations without repetitions over the set{1, .., n}.
Thus

f |l(k)(x) =

∫

Rk

f(x)dxl(k)1 · · · dxl(k)k
(51)

In addition, define the complement vectorc(l(k)) = {1, .., n}\
l(k) as a vector of indexes that are missing in the vectorl(k).

We can definefx in the following way

fx(x, t) ≈ At((1 − p)n + pn)fq(x, t)+ (52)
bn/2c
∑

k=1

∑

l(k)∈V (n,k)

(

pk(1 − p)n−k + pn−k(1 − p)k
)

(53)

fq|l(k)(x, t)fq|c(l(k))(x, t)+ (54)
1

2
odd(n)

∑

l(ν)∈V (n,ν)

(

pν(1 − p)n−ν + pn−ν(1 − p)ν
)

(55)

fq|l(ν)(x, t)fq|c(l(ν))(x, t) (56)



TABLE I
COVARIANCE MATRIX OF STABLE DISTRIBUTION FOR VARIOUS VERSIONS

OF CROSSOVER

crossover type stable covariance matrix spread
no crossover [2.929, 0.592; 0.592, 1.448] 3.891
arithmetic [1.607, 0.172; 0.172, 1.178] 1.864
generalized arithmetic,b = 0 [1.947, 0.277; 0.277, 1.255] 2.368
uniform [2.964, 0.296; 0.296, 1.533] 4.457

whereν = dn/2e, and odd(n) returns 1 ifn is odd, and 0
whenn is even.

Observe that when the fitness function is uncorrelated
Gaussian thenfq(x, t) is also uncorrelated Gaussian and
fq(x, t) = fq|l(k)(x, t)fq|c(l(k))(x, t) for all k = 1, .., n − 1.
Then

fx(x, t) ≈
∫

Rn

E{fq(z, t)}dz (57)

and formulas (23) and (24) will apply for the mean and the
marginal variance vectors.

If the fitness function is correlated Gaussian, thenfq(x, t)
becomes correlated Gaussian, which may result in a correlated
Gaussianfs(x, t). Compact formulas for the evolution of
covariance matrix are hard to define in a general case, however
it is quite straightforward to observe that formula (56) will
produce a mixture of Gaussian functions such that, at least for
some of them, axes of elipsoids of the sampling distribution
p.d.f. will not be parallel to axes of elipsoids of identicalvalues
of the fitness function. Note also that the mean vector of a
stable sampling distribution will be equal to the position of
the fitness maximum.

F. Discussion

Consider an example fitness function which is Gaussian
with mean vectorM = 0 and the covariance matrixC =
[6, 2; 2, 1]. In Tab. I, covariance matrices of stable sampling
distributions are provided. In Fig. 5, a graphical presentation
of the covariance matrices from Tab. I is given. We plot equal
value lines of the p.d.f. of the stable sampling distribution
characterized by covariance matrices. Inside ellipses encircled
with these lines, probability of generating a point is greater that
0.994. To indicate the shape of the fitness function, we plot
one of its isolines. All ellipses, except for one corresponding
to the uniform crossover, have their axes parallel to axes of
the objective function isoline. Area of the elipses is different
and is smallest for the standard arithmetical crossover. To
better characterize covariance matrices, define the spreadof
the covariance matrix as the product of its eigenvalues. Thus,
spread is proportional to the area of elipse which contains
99.4% of points that will be generated according to the p.d.f.
of the sampling distribution. Spread values are given in the
third column of Tab. I.

So we can say that if an arithmetic crossover scheme is used
which consists in weighted averaging of parents, then popula-
tions are more compact than in case when no crossover is used.
On the other hand, application of the uniform crossover results
in partially decorrelated sampling distribution, whose which in
the considered example results in the stable distribution whose
spread is greater than for the case with no crossover.
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Fig. 5. Lines of equal p.d.f. value which encircle areas where probability of
generating a point is greater than 0.994 for various EA versions: no crossover
(blue), arithmetic crossover (red), generalized arithmetic crossover (magenta)
and uniform crossover (green); in all cases, Gaussian mutation is applied; for
the sake of comparison, one of the isolines of the fitness function is plotted

III. W HEN THE POPULATION IS SMALLER THAN INFINITE?

In the preceding section we considered equations that define
mean vector and covariance matrix of a stable sampling
distribution provided that the fitness function is Gaussianand
the population is large enough to neglect the influence of
a single individual’s fitness on the sum of fitness used in
the denominator of the expression (8). In this section we
investigate the stable sampling distribution of individuals when
the population is small and the aforementioned approximation
is bold.

A. Stable distribution of large populations

In statistics, sample size of the size 100 is usually big
enough to perform statistical analysis. We assumed that the
population sizeµ = 100 can be regarded “practically inifinite”
and we tested if the empirical distribution of points generated
by the EA was consistent with the distribution predicted with
the use of the infinite population size analysis.

We use the Gaussian fitness function inR2 with zero mean
vector an the covariance matrix equal to[6, 2; 2, 1] — just
the same function that was used to compare spread of the
population under various crossover methods. We initialized
base population with the uniform distribution in the box
[−5, 5]× [−5, 5], and we let the evolution last for 500 gener-
ations. Then we took chromosomes from generations number
101 up to 500 (which makes 40000 chromosomes in total) and
we used all these chromosomes to estimate mean vector and
covariance matrix for each version of the EA. The results are
presented in Tab. II.

A very good consistency can be observed between the
covariance matrix values that have been predicted using the-



TABLE II
COVARIANCE MATRICES OF STABLE DISTRIBUTIONS FOR DIFFERENT

VALUES OF CROSSOVER; MATRIX COEFFICIENTS WERE ESTIMATED FROM
THE EXPERIMENTAL DATA

crossover type stable covariance matrix
no crossover [2.964, 0.605; 0.605, 1.453]
arithmetic [1.624, 0.182; 0.182, 1.192]
generalized arithmetic,b = 0 [1.98, 0.287; 0.287, 1.254]
uniform [2.798, 0.267; 0.267, 1.440]

oretical considerations and estimated from the experimental
data.

B. Stable distribution of small populations

In equation (8) we assume that the influence of the indi-
vidual’s fitness on the sum in the denominator is neglible. In
fact, if we assume that all individuals are generated from the
random variable whose p.d.f. isfs(t − 1), then the selection
probability of an individualz equals

Ps(z, t) =
q(z)

q(z) + (µ − 1)avgfs(t−1),µ−1{q(x)} (58)

where avgfs(t−1),µ−1{q(x)} is the average value ofµ − 1
points generated with the distribution whose p.d.f. isfs(t−1).
Note that the selection probability of an individual is a
random variable in contrast to its approximation, which is
a deterministic value. Relation between the actual selection
probability and its approximatioñPs(z, t) (cf. (8)) is given by

Ps(z, t) =
P̃s(z, t)

q(z)
µEfs(t−1){q(x)} +

(

1 − 1
µ

)

avgfs(t−1),µ{q(x)}

Efs(t−1){q(x)}

(59)
For small populations, the discrepancy between the actual

and approximated selection probability may become quite
large due to the term1 − 1/µ in the denominator of (59).
Term q(z)

µEfs(t−1){q(x)} in the denominator of(59) is responsible
for reducing the selection probability for best fit individuals,
and increasing the selection probability of poorly fit ones.
This will effect in reducing the selection pressure, and the
degree of reduction is inversely proportional to the population
size µ. Thus we conclude that for small populations, spread
of the sampling distribution should be greater than for large
populations.

We illustrate the aforementioned effects for the Gaussian fit-
ness function with zero mean and covariance matrix[6, 2; 2, 1].
We consider EA without crossover. If we assume that the
sampling distribution is a stable one (computed with the use
of the approximated formula for the selection probability), we
can use the stable p.d.f. in the formula (59). Thus we can
observe what will happen with the selection probability and
in the same time we can predict whether the approximation
of the stable distribution will be close to the current one (in
that case, we would see that the proportionPs(z, t)/P̃s(z, t)
is almost one) or the approximation is too bold to believe it.

We estimated selection probabilities by making simulations
of the population contents with the use of the approximation
to the “stable” distribution. Fitness of the first individual was
changed in the range[0, .., 0.1125] with a step 0.00125, and for
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Fig. 6. Proportion ofPs(x)/P̃s(x) as a function of the individual’s fitness
for the population sizeµ ∈ {2, 5, 10, 20, 50, 100}; curvature of the line
grows with the population size decreasing

TABLE III
COVARIANCE MATRIX C OF THE STABLE SAMPLING DISTRIBUTION

ESTIMATED FROM EXPERIMENTS FOREA WITHOT CROSSOVER, FOR

DIFFERENT POPULATION SIZEµ

µ C
2 [21.02, 7.04; 7.04, 4.63]
5 [4.55, 1.27; 1.27, 1.77]
10 [3.17, 0.67; 0.67, 1.53]
20 [2.96, 0.61; 0.61, 1.43]
50 [2.93, 0.58; 0.58, 1.43]
100 [2.94, 0.59; 0.59, 1.45]

each value from that range, 10000 simulations of the remaining
population members were made. The results are plotted in
Fig. 6.

To illustrate the effect of reducing the selection pressureand
increasing sampling distribution spread for small populations,
we ran EA with no crossover for several different values of the
population sizeµ. Each EA run generated 500 populations, and
we computed covariance matrix using last 400 generations.
Obtained results are presented in Tab. III.

So we conclude that for the fitness function under testing,
even for rather moderate population sizeµ = 20, covariance
matrix of the sampling distribution is well approximated bythe
covariance matrix obtained with the use of infinite population
size model. In addition we observe that smaller population size
indeed results in wider spread of the sampling distribution, so,
paradoxically, increase of the explorative power of the EA can
be obtained by reducing the population size down to even less
than 10 individuals.

IV. A BILITY TO FIND GLOBAL MAXIMUM

If the fitness functions has many local maxima and the goal
is to search for the global maximum then the spread of the
sampling distribution plays the key role in attaining the global
maximization task. Points from the current population usually



form a cluster whose position in the search space tends to
stabilize for a number of generations, i.e., the mean value of
the point position oscillates around a certain “stable” value.
This tendency appears when the fitness function is locally
concave, and stabilization may take long when the population
is little diversified so that probability of generating points
inside this locally concave area is high.

If the fitness function is symmetrical about the local max-
imum in its neighborhood, then the “stable” value of the
population mean is simply the position of the local maximum.

A way in which the population may change its position is
to go from the attraction basin of the current local maximum
to the attraction basin of another local maximum in the
neighborhood of the current one, so that the “stable” value of
the mean position of points changes its position to the vicinity
of another local maximum. This phenomenon is known as
“saddle crossing”, although it is not always the case that the
transition of the population goes through the saddle point.

Saddle crossing is more possible when the probability is
increased of generating a point outside the attraction basin of
the current local maximum. Moreover, if the aforementioned
probability is too low, saddle crossing will not be observed
in practice and the neighborhood of a current local maximum
will trap the population for good.

When a realistic fitness function is maximized, a good
strategy is to keep the saddle crossing ability on a reason-
ably high level which in turn implies keeping the sampling
distribution with wide enough spread. However if this spread
were too wide, it would result in poor ability to find a local
maximum. So, sampling distribution spread should be a good
compromise between the ability to stabilize for a number
of generations (exploitation) and the ability to cross saddles
(exploration). The problem with attaining this compromiseis
its assymetry — if the spread is too high, EA behaves like
a blind search but is still able to find an approximation to
the global maximum, but when the spread is too small, EA
looses its global optimization properties and reduces to a rather
ineffective stochastic local optimizer.

A. Sampling distribution spread and the saddle crossing abil-
ity

Let us illustrate the above considerations with an example
fitness function inR2 given by the sum of two Gaussian
functions

q(x) = Gm1,C1(x) + Gm2,C2(x) (60)

In our example we assumem1 = [−2, 2], C1 =
[6, 2; 2, 1],m2 = [2,−2], C2 = [1,−1;−1, 4]. Contour plot
of the fitness function is given in Fig. 7. Global maximum is
located in the vicinity of the pointm1, and the local maximum
is observed nearbym2. The saddle point is approximately [0.8,
1.6].

We ran the EA with the proportional selection, no crossover,
and Gaussian mutation. Population size was equal to 100,
a unit correlation matrix of the mutation was used, and the
algorithm was stopped after 500 generations. Initial popula-
tion was generated as clones of the point[2,−2] where the
fitness function takes its local maximum. Thus, EA needed

x1

x2

 0.01 

 0.02 

 0.03 

 0.03 

 0.04  0.04 

 0.05 

 0.05 

 0.06 

 0.06 

 0.07 

 0.07 

 0.08 

 0.08 

 0.09 

 0.1 

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

Fig. 7. Contour plot of the fitness function under consideration and the
borderline between the attraction basins of the global and the local maximum

x1

x2

 0.01 

 0.02 

 0.03 

 0.03 

 0.04  0.04 

 0.05 

 0.05 

 0.06 

 0.06 

 0.07 

 0.07 

 0.08 

 0.08 

 0.09 

 0.1 

−6 −4 −2 0 2 4 6

−
6

−
4

−
2

0
2

4
6

Fig. 8. All points generated by a single EA run vs. contour lines of the
fitness function; see text for the details

to generate points outside the attraction basin of the local
maximum in order to approach to the global one. The set
of all points that have been generated by the EA is depicted
in Fig. 8 It can be observed that generated points indeed form
clusters whose centers are located about both maxima of the
fitness function. Deeper insight into the population shows that
the population periodically stays about either global or local
maximum of the fitness function. This effect is indicated e.g.
by the plot in which coordinates of mean values of points
contained by consecutive populations are plotted as a function
of the generation number (cf. Fig. 9). In the considered EA run,
population is closer to the local maximum in generations 1-
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Fig. 9. Coordinates of the point being the mean of all points contained in
generation numbert: black circles – coordinatex1 and red bullets – coordinate
x2; plot was obtained for the run whose trace ofpoints is given in Fig. 8

100. A clear attraction by the global maximum can be observed
in generations 200-500. Occasionally, population drifts further
from the maximum around which it has stabilized. One of
such drifts resulted in transition between the local and global
maximum, which took place in generations 130-180.

In each period when the population is attracted by a global
or local maximum for a time longer than just few generations,
the population can be treated as if it has been generated from
a random variable with the p.d.f. which does not vary over
time. This p.d.f. can be derived using formulas (23) and (24)
where the fitness function is reduced to a single Gaussian term
of the sum (60) which introduces either the global or the local
maximum.

Consider EA for which we observed transition of the
population between the atraction basins of both minima. In
Fig 10a), elipses associated with the local or the global
maximum are plotted. Each ellipse is the isoline of the stable
p.d.f. which encloses points that generated with probability
0.994 (a 2-dimensional version of the “3σ rule”). Observe that
both ellipses encircle area contained by the attraction basin of
the other maximum of the fitness function. Thus, it is possible
for the population to perform the saddle crossing.

In the other case, when no such overlapping takes place,
saddle crossing is practically impossible (although theoret-
ically is still expected with a very small possibility). To
confirm this intuition, we ran the EA with identical settings
as previously, but using the arithmetical crossover which is
performed with probabilitypc = 1. Lines of equal p.d.f. value
which encircle points accessible with probability 0.994 are
plotted in Fig. 10b). It appears that the ellipse associatedwith
the local maximum does not overlap the attraction basin of the
global maximum, so saddle crossing can hardly be expected.
Indeed, in 500 independent runs, when the population was
started from clones of point [2,-2], we observed no case when
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Fig. 10. Lines of equal p.d.f. that encircle sets where points would be
generated with probability 0.994 if the fitness function were equal to a single
Gaussian term of the sum (60); a)pc = 0, b) arithmetic crossover,pc = 1

the mean point of the population was contained in the 4th
quarter of the coordinate system, which would indicate that
the saddle crossing took place. In addition, we started EA
in the global maximum to see if the opposite direction of
the saddle crossing is possible, and again the negative result
was obtained, although in that case some points from the
attraction basin of the local maximum are contained in the
“0.994 ellipse” associated with the global one.

For both cases under comparison, i.e., with and without
arithmetical crossover, we computed covariance matrix of
stable distributions derived for an infinite population, assuming
that the fitness function contains only a single Gaussian term,
associated with the local or the global maximum. We also
estimated the covariance matrix taking points generated bythe
EA from periods where the population seemed to be stabilized



TABLE IV
COVARIANCE MATRIX VALUES ESTIMATED FROM THE EXPERIMENTAL

DATA WHEN THE POPULATION REMAINED QUASI-STABLE ABOUT A
SINGLE LOCAL MAXIMUM OF THE FITNESS FUNCTION(60); ‘L’ AND ‘ G’

STAND FOR PERIODS WHEN POPULATIONS ARE STABILIZED AROUND THE

LOCAL OR THE GLOBAL MAXIMUM , RESPECTIVELY.

pc theor. estim.
0 l [1.71, -0.53; -0.53, 3.13] [1.66,-0.39;-0.39,2.76]
0 g [2.93, 0.59; 0.59, 1.44] [3.85,-1.26;-1.26,3.34]
1 l [1.25, -0.10; -0.10, 1.54] [1.27, -0.10; -0.10,1.60]
1 g [1.61, 0.17; 0.17,1.18] [1.66, 0.14;0.14,1.20]

around only one maximum. In Tab. IV we compare these
covariance matrix values. For the comparison we took results
from a single EA run. It can be observed that the estimated
results are much better consistent with predicted for a single
Gaussian term when no saddle crossing took place. It seems
that the population diveristy is too small to “see” anythingelse
but the local concavity of the fitness function. This definitely
confirms the intuitions formulated in the previous text and in
Fig. 10b). On the other hand, when the population diversity
becomes sufficiently large, sampling distribution spread has
much less in common with the distribution predicted using
unimodal, concave local approximation of the fitness function.

B. Small populations and the saddle crossing ability

As we already mentioned before, prediction of the spread
of the sampling distribution based on the infinite population
size model becomes underestimated when the population size
decreases. This can have an interesting consequence for the
saddle crossing ability, which can be increased by reducing
the population size.

To observe this effect we ran the EA with Gaussian mutation
defined by the unit covariance matrix, arithmetic crossover
with probability from the setpc ∈ {0, 0.1, ..., 1}, and the
population size from the rangeµ ∈ [2, 300]. The algorithm
was initialized with clones of the local maximum of the
fitness function, and the algorithm was run for 200 generations.
For each value of the population sizeµ, we performed 100
independent runs of the EA and in each run, we computed the
fitness value of the best point found in that run. The average
of the best point found in 100 independent runs can be treated
as an indication of the saddle crossing ability of the EA, and
in the same time, as an indicator of the EA robustness against
premature convergence. In Fig. 11 we provide obtained results.

We can see a surprising pattern — average fitness of the best
point tends to decrease withµ increasing, it takes its minimum
for moderate size populations, and then increases. When the
crossover probability is small, large populations (µ > 50)
perform slightly better than very small ones (µ < 5). With
pc increasing, even population with hundreds of points does
not perform as good as a very small one. It seems that EA
which processes small populations is much less sensitive to
improper settings of parameters resulting in too small spread of
the sampling distribution for very large populations. It should
be stressed that all algorithms under comparison were stopped
after 200 generations, so e.g. whenpc = 1, the algorithm with
µ = 2, after examining 400 points, obtained better result than
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Fig. 11. Average fitness of the best point obtained for different population
size valuesµ, for the crossover probabilitypc changed gradually from 0
(upper line) to 1 (lower line)

the algorithm withµ = 300 which used 60000 points. Thus,
if the stop criterion were set on the number of fitness function
evaluations rather than the number of generations, then the
superiority of the small population over large population would
be much better visible.

A look at the set of points generated in a single EA run
indicates a substantial difference in EA behavior for small
and large populations (see Fig. 12).

In the case of a small population, the population is more
flexible and it is quite probable that the saddle crossing will
appear, i.e., all individuals from the population will settle down
in the attraction basin of the global maximum. Certainly, this
settlement will be not for good, and one can expect that if the
simulation is long, the population will oscillate many times
between the local and the global maximum (cf. Fig. 12a).

When the population size grows, it becomes less flexible,
and the saddle crossing is less probable. This does not exclude
possibility for a point to approach the whole neighborhood
of the global maximum, but rather rarely the population
will cross the saddle. Points which are distant to the local
maximum can be interpreted as results of macromutations —
in Fig. 12b), only a few of them were luckily located nearby
the point[−2, 2], but they did not succeed to attract the whole
population.

V. CONCLUSIONS

We provided a discussion of the saddle crossing property
of an evolutionary algorithm. Rather than consentrating on
the diveristy of current population, we considered covariance
matrix of the sampling distribution which defines the location
of points generated by the EA.

We showed that when a Gaussian fitness function is con-
sidered, it is possible to compute an approximate form of
the stable distribution which stays in a good agreement with
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Fig. 12. Sets of points generated in 200 generations of an EA with arithmetic
crossover,pc = 0.8; population size was set to a)µ = 5 and b)µ = 100

the experimental evidence. We also gave arguments that the
estimated covariance matrix of the sampling distribution is
a lower bound of the covariance matrix observed in the
experimental data, and the approximation becomes quite good
even for moderate population size.

When the fitness function is the sum of Gaussian functions,
then it is possible to compute, for each Gaussian term of the
sum, the p.d.f. of the stable sampling distribution as if the
fitness function equal to that single Gaussian term. The integral
of the aforementioned p.d.f. over the attraction basin of another
local maximum is the probability to cross the saddle by a
single point. Thus, if the integral is approximately zero, saddle
crossing will not appear in practice.

We indicate that a possible way of coping with this problem
is to reduce the population size. Moreover, when the popula-

tion is small, ability to cross the saddle becomes less sensitive
on the spread of the sampling distribution which allows more
freedom in choosing the crossover and mutation method.
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