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Multidimensional signals

e Analogue K-D signal X,(t1, t2, t3, ..., tk), tk not necessarily time.

e Discretization (sampling) — X(Ny, Ny, N3, ..., Nk), Some signals are already discrete!
— multidimensional discrete signal = multidimensional number series

e sampling periods Tgx — sampling frequencies fsx = %k not equal;
if t is spatial, fsk is spatial frequency

e Examples
— 2-D picture

— linear antenna array ({; — discrete or continuous space, t, — continuous time)
— radar signal
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Image — a 2-D signal

Ts, T — pixel dimensions; g, fo — resolution (dpi, lines/mm)
e Fourier spectrum:
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finite picture — represented by a discrete spectrum
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e reconstruction by a discrete Fourier series
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2-D LTI systems

Linear and (Time = shift in ng) Invariant (we extend the definition for 1-D systems)

e allows for analysis by impulse response

(unit impulse: d(m,n) = 1if m=n= 0,= 1 otherwise)

Impulse response is sometimes called Point Spread Function — PSF
e causality — meaningful if one of dimensions is time-related

e 2-D convolution (linear filtering)
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e if h(m, n) = hy(m) - hy(n), we may decompose 2-D filtering into 2x(1-D) (important for long
Impulse responses)




