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General information

“Credits” 2h/week lecture + 2h/week ~ 7-4h laboratory exercises in groups < 12 persons.
Next lecture Mon, 10:15-12 — the lab schedule will be announced then!!

Textbook  A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall
1989 (or Il ed, 1999; also acceptable previous editions entitled Digital Signal
Processing).

Contact J. Misiurewicz, (jmisiure@elka.pw.edu.pl) room 453. A web page is under
construction (http://staff.elka.pw.edu.pl/ jmisiure/)

Homeworks Announced as a preparation for the labs.

Exams Two short tests within lecture hours (TBA with the lab schedule) and a final exam
during the winter exam session (TBA).
2x10% = 20% tests
Scoring: 6x5% = 30% lab + homework (lab O — not scored)

50% final exam
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Signal classification

Continuous or Discrete amplitude and time.
X(t)

CA-CT — “analog” signals

DA-CT —

CA-DT — CCD, SC, SAW devices
DA-DT —— digital devices

We'll speak mainly about DT

properties; only in some subject
DA will be of importance.
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DT signal representations

DT signal «———— a number sequence

x(n
x| = {x(n)} g
x[n] is a number sequence (or ...) 0.8
X(n) is a n—th sample >
0.4
— X(n) is undefined for n ¢ 1
0.2+
e it may come from sampling of o | | 4}
analog signal 02 e n
e but it may also be inherently ]
discrete 9
-0.8
e N may correspond to: time, space, &

-1-

However, the most popular interpretation is: periodic sampling in time.
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Periodic sampling
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n—= t/TS7 TS — 0.025 [mS]

X(n) = Xa(N'Ts)

Misinterpretations

IS between

—— we do not know what

points
a) sin(n-(1/5)-1) or

b) sin(n-(2+1/5) 1) ?
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Number sequence (or DT signal) operations; basic sequences

operation notation definition

sum AN =X +y[n]  vn Zn) =x(n) +y(n)
scale Zln| =a-y[n| vn zin) =a-y(n
shift Z[n] = x[n— ng vn z(n) = x(n—np)
difference  z[n] =x[n] —y[n]  V¥n z(n) =x(n) —y(n)
product Zinj=x[n]-y[n]  Vn zZ(n)=x(n)-y(n)

0% T ¢ ¢ ¢ T e S 2 -1 0 1 2 3 4
-2 -1 0 1 2 3 4 5 n .
. . Unit step sequence
Unit sample sequence (DT impulse)

3[n| = u[n] — un— 1] unj =% dn—K
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DT systems

A DT system: an operator mapping an input sequence X[n| into an output sequence y[n|.

yln] = T{x[n[}

— A rule (formula) for computing Examples:
output sequence values y(n) from
the input sequence values  X(n). y(n) = 3-x(n)
_ | | X(n) +x(n—1)

" y(n) = =
Implementat 1e
mplementations: nN=—35 x(n—k

y(n) =& kZO (n—k)

e PC program -

e matlab m-file y(n) = Z h(k) - x(n—k)
e custom VLSI or FPGA

e programmable digital signal processor
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Linear & time-invariant DT systems

Linearity property

T{G]_X]_[n] + GzXz[n]} = 0(1T{x1[n]} + 0(2T{x2[n]}

in other words:
if

X1[N] —  i[n]

Xo[N] —  Y2[N|

then

axy [N] —  ayy[n] (scaling, homogeneity)

XiN[+X%[n]  —  yi[n[+Y2[n]  (additivity)

Time invariance (shift invariance)
If
T{x[n]} =yIn|
then
Vg, T{X[n—ng]} =y[n—ng
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Linear systems - examples

e y(n)=3-Xx(n) —is linear; it is also memoryless

o y(n) = X(”)+)2((n_l) (not memoryless):

T{ax(n) +axx(n)} = Gva() + aze(m] +lava(n - ) +azeln— 1) _

2
axa(n)+ax(n—1)  dxxa(n)+axx(n—1)
_ —|— _
2 2
X1(N)+X1(n—1 Xo(N) +X(N—1
=1 1( ) 21( )—I-Gz 2( ) 22( ):cxlyl(n)+0(2y2(n) cnd

(notL) y(n) = (x(n))? because
T{xu(n) +x2(n)} = (Xa(N) +X%2(N))? = (x1(N))? + (%2(N))? + [2- X2 () Xx(1)]
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shift example

Input signals x[n— K. Responses T {x[n—K]|} of Tl system T{.}
1 1
x(n) 1 ‘ y(n)
0<% T T T ¢ 0¢ ? T T T [ T ¢
2 1 0 1 2 3 4 5 n 2 1 0 1 2 3 4 5 n
1 1
x(n—Kk),k=-1 y(n—k),k=-1 1
0¢ T \ 0<% T S T ‘ T } T
2 -1 0 1 2 3 4 5 n 2 -1 0 1 2 3 4 5 n
1 1
X(N—K), k= 42 ‘ ‘ y(n—K), k= 42
0 P | \g 0 T T T ] T 14 9T \g
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Other properties: causality, stability

causality
— Y(Np) depends only on X(Nn), n < ng (usually less important in DT implementations)

stability
—— bounded input causes bounded output [BIBO]
bounded — IBy: Vn |x(n)| < By <
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Examples

Decimator (compressor)

— L, but not Tl (prove it!)

1-st order difference
forward: y(n) = x(n+ 1) — X(n) — noncausal

backward: y(n) = x(n) —x(n—1) — causal

Accumulator

— unstable; (hint: feed it with u[n])
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LTI systems: impulse response

h[n] = T{d[n]} — impulse response of T{.}
h[n] characterizes completely system T{.} — we may compute its response for any input X[n|.

e Decompose X[n| into weighted sum of
impulses 0[N — kK]

(o¢]

X =3 xKSn—K ‘ } ‘ ] r@).ém@

k:—OO

0¢ ? T T T T T \g

e Superpose responses  (use LTI
properties)

(0]

yi = 3 xkhin—K

k=—o0

—— this is a convolution sum
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Convolution example
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Convolution properties

we denote as

Properties of “ x”

“x" is commutative: X[n| x h[n] = h[n] xx[n]

“x” distributes over addition x[rﬁ * (h1[N] 4+ hz[n]) = X[n] * hy[n] +X[n] * (hz[n])

System and hin]

e causality < h[nj]=0, n< 0. Ahint: y(n) =S¢ __,h(k)x(n—K)
e stability & S=75. _,|h(k)| <o
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Linear difference equations

... describe an important class of LTI systems.

N M
Y ay(n—k) = 3 bx(n—k), a = 1 traditionally)
k=0 k=0
or
y(n) = a-y(n—1)4+ax-y(n—2)+...+a,-y(n—N) +

+bo-x(n)  +by-x(N—21)+by-x(nN—2)+...+bp-x("N—M)
Note: if, for a given input X,|n|, an output sequence Yy |n| satisfies given differential equation,
y[n] = yp[N] -+ yn[N]

will also satisfy the equation, if y,[n] is a solution to Tk, ay(n—k) = 0 (homogenous equation).
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Differential equation — example

An equation: y(n) = a-y(n—1) +x(n)

with input " .
X(n) =0,n<0 @
0.n>0. ,\
x(n) # 0, n> . J
0 = ey oy
y(1) = a-y0)+x(1)
y2) = ayl)+x(2) y0) = aa+l
y(1) = a(aa+l)=a’a+a
y2) = a‘a+a

y(n) _ an+1a +a"
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example — continued




