Multidimensional signals

- Analogue K-D signal $x_a(t_1, t_2, t_3, \ldots, t_K)$, t_k not necessarily time.
- Discretization (sampling) $\longrightarrow x(n_1, n_2, n_3, \dots, n_K)$, some signals are already discrete! \longrightarrow multidimensional discrete signal = multidimensional number series
- sampling periods $T_{sk} \longrightarrow$ sampling frequencies $f_{sk} = \frac{1}{T_{sk}}$ not equal; if t_k is spatial, f_sk is spatial frequency
- Examples
 - 2-D picture
 - linear antenna array (t_1 discrete or continuous space, t_2 continuous time)
 - radar signal

Image – a 2-D signal

- T_{s1} , T_{s2} pixel dimensions; f_{s1} , f_{s2} resolution (dpi, lines/mm)
- Fourier spectrum:

$$X(e^{j\theta_{1}}, e^{j\theta_{2}}) = \sum_{n_{1}=-\infty}^{+\infty} \sum_{n_{2}=-\infty}^{+\infty} x(n_{1}, n_{2})e^{-jn\theta_{1}} e^{-jn\theta_{2}}$$

 $\theta_k = \omega_k \cdot T_{sk} = \frac{2\pi f_k}{f_{sk}}$ – normalized angular frequency

• finite picture — represented by a discrete spectrum

$$X(k,l) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} x(m, n) e^{-j2\pi km/M} e^{-j2\pi ln/N}$$

reconstruction by a discrete Fourier series

$$x(m,n) = \frac{1}{MN} \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} X(k,l) e^{j2\pi km/M} e^{j2\pi ln/N}$$

2-D LTI systems

Linear and (*Time* = *shift in* n_k) Invariant (we extend the definition for 1-D systems)

- allows for analysis by impulse response

 (unit impulse: δ(m,n) = 1 if m = n = 0, = 1 otherwise)
 impulse response is sometimes called Point Spread Function PSF
- causality meaningful if one of dimensions is time-related
- 2-D convolution (linear filtering)

$$y(m,n) = \sum_{i=-\infty}^{+\infty} \sum_{j=-\infty}^{+\infty} x(i, j) \cdot h(m-i, n-j)$$

if h(m, n) = h₁(m) ⋅ h₂(n), we may decompose 2-D filtering into 2x(1-D) (important for long impulse responses)