EDISP 2005/2006 – Final exam, 2nd chance, **version A** 28.01.2006

Name:		
realic.	$\overline{2}$	
For the short problems, try to write the answer	3	
in the provided space. Put your calculations on	4	
additional sheet. Solve long problems on the	5	
additional sheet, marked with your name.		

1. A DT system is described as follows:

$$T(x[n]) = \sum_{k=0}^{3} x(n+k)$$

(a) (2 p.) is T

- causal yes: or no: explain why:....
- linear yes: or no: explain why:
- (b) (2 p.) find the impulse respone of the system T
- (c) (2 p.) find the step response
- 2. (6 p.) Let x[n] be a signal obtained by sampling a continuous-time cosine wave x(t) with
- 2. (6 p.) Let x[n] be a signal obtained by sampling a continuous-time cosine wave x(t) with sampling period of 100 μ s. The frequency of x[n] is equal to $\theta = 0.125 \cdot \pi$
 - (a) Calculate the frequency of x(t) and period K of the x[n].
 - (b) Sketch the absolute value of DFT X(k) for the transform size equal to $2 \cdot K$.
 - (c) Label the frequency axes carefully with index k and with θ values.

3. (10 p.) A filter is described by a difference equation

$$y(n) + 0.5y(n-1) = x(n)$$

where x(n) denotes the input signal and y(n) the output signal.

- (a) Find the transfer function H(z) of the filter
- (b) Find zeros and poles
- (c) Sketch the graph of a simple implementation of the filter
- (d) Find the output for a discrete input signal defined as $x(n) = 1 + (-1)^n$
- (e) Find the output for a discrete input signal defined as $x(n) = \delta(n-5)$

4.	Tran	<u>busal</u> bandpass FIR filter of the order 7 was designed from windowed Inverse Fourier asform of the zero-phase ideal filter characteristics. A rectangular window was used. I filter passband was from $\theta_l = \frac{\pi}{4}$ to $\theta_h = \frac{\pi}{2}$.
	` /	(2 p.) Plot the phase characteristics of the resulting filter. Find the group delay. (3 p.) Sketch the <i>approximate</i> amplitude characteristics of the resulting filter (exact calculations aren't required). Show and name the artefacts from the method nonideality.
5.	"Tri	cky questions": to obtain a full score, remember to present your reasoning.
	(a)	(3 p.) Let $x(n)$ be a limited energy signal with non-zero samples only for $0 < n < N-1$. What is the difference between Fourier transform and DFT of this signal?
	(b)	(3 p.) A filter $y(n) = x(n) + x(n-1)$ (x-input, y-output) filters a white noise signal $\xi(n)$ with zero mean and standard deviation $\sigma_{\xi} = 1$. Find the mean value of the output signal $\eta(n)$. Answer: calculation:
	(c)	(2 p.) In a Kaiser window - what depends on the β parameter? Answer:
	(d)	(2 p.) The inverse Fourier transform of limited energy signal is calculated by summation integration (choose answer, and explain why:)
	(e)	(4 p.) (fill in the answers) If we calculate the instantaneous spectrum of a signal using a window of length K , i. the frequency resolution is proportional to
	(f)	ii. the time resolution is proportional to
		Answer:
	()	Answer:
	(g)	(2 p.) Calculate the \mathcal{Z} transform of a signal $x[n] = \delta[n] - \delta[n-1] + \delta[n+1]$
	(h)	Answer:
		i. using the definition formula calculation:
		ii. using the FFT method calculation:
	(i)	(5 p.) An analog voice phone is usually designed to transmit the tones in the range of 0-4 kHz. What should be the sampling frequency, if we want to convert the analog lines to digital? Answer: calculation:
		What should the designer keep in mind if the actual microphone passes the 0-10 kHz band? Answer:
	(j)	(3 p.) How many nonzero samples will be in the convolution of two 15-point square impulses? Answer: calculation: