Lab 6 (w/emubox) – digital signal processors

Useful resources

Motorola 56k instruction set

· · · · · · · · · · · · · · · · · · ·					abs asl asr clr neg rnd abs a					
registers	symbols			add	add sub:					
X0, X1, Y0, Y1	х, у			mp	, sub. v. mpvr.	mac. m	acr: m	pv $\pm x.v.a$;		
A, B	a, b	\mathbf{S}	g, h	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ nop \end{array} \end{array} \\ \end{array}$						
R0,, R7	r									
N0,, N7	n	i								
<pre>move x:ea,g; from memory move g,x:ea; to memory move ea; (update Rn) move g,h;</pre>					asser	nbly	ibly meaning		mode	
					ea	X&Y	ea	R update		
					(r)-n			r=r-n;		
move #c,g;					(r)+n	(yes)		r=r+n;		
ea – Effective Address (see table) \longrightarrow					(r)-	(yes)		r=r-1;		
					(r)+	(yes)		r=r+1;		
					(r)	(yes)	r		indirect	
					(r+n)		r+n		indexed	
					с		с		absolute	

macr -x0,x0,a a,x:(r3)- y:(r5)+n5,x0

Example c5_fir7.asm - FIR order 7

```
N equ 8
org x:0
samples ds N
org y:0
coeffs dc 0.0286,0.0716,0.1683,0.2458,0.2458,0.1683,0.0716,0.0286
org p:$100
init
move #samples,r0
move #coeffs,r4
move #N-1,m0
move m0,m4
.repeat
  in a
  move a,x:(r0)
  clr a x:(r0)+,x0 y:(r4)+,y0
  .loop #N-1
    mac x0,y0,a x:(r0)+,x0 y:(r4)+,y0
  .endl
  macr x0,y0,a (r0)-
  nop ; DSP56321 pipelining need this !
  out a
forever
Example c5_iir3.asm - IIR order 3
N equ 3
org x:0
states ds N
```

```
org y:0
coeffs dc 0.8739,0.9217,0.2671,-0.2036,0.2036,-0.1868,0.1868
org p:$100
init
move #states,r0
move #coeffs,r4
move #N-1,m0
move #2*N,m4
.repeat
  in a
  move x:(r0)+,x0 y:(r4)+,y0
  .loop #N-1
    mac -x0,y0,a x:(r0)+,x0 y:(r4)+,y0
  .endl
  macr -x0,y0,a x:(r0)+,x0 y:(r4)+,y0
  nop ; DSP56321!
  clr a a,y1
  .loop #N-1
    mac +x0,y0,a x:(r0)+,x0 y:(r4)+,y0
  .endl
  mac +x0,y0,a x:(r0)-,x0 y:(r4)+,y0
  macr +y1,y0,a y1,x:(r0)
  nop ; DSP56321 !
  out a
forever
```

How to obtain a working box

- make your program (please follow the directions, some tools need it **just this** way)
 - Use windows explorer to create "New \longrightarrow Text file" in your working directory (you can e.g. create a "New folder" on the desktop)
 - Change the name of the file like project.ASM, agree with the warning
 - Drag your file to the SciTe icon it opens the SciTe editor to edit your file
 - − translate project.ASM into project.CLD– use SciTe menu "Narzedzia" (Tools) \longrightarrow "Buduj" (build)
 - view *project*.LST check for errors (open it e.g. with SciTe)
 - on errors, iterate through edit-translate-check
- simulate program run
 - prepare data (Matlab, running it from "Narzedzia" (Tools) menu of SciTe makes X.DAT file in proper directory) save56(cos(0.1*(0:99))); or save56(delta56()); then quit
 - execute simulator ("Symulator" in SciTe menu); each "in" instruction will read from X.DAT, each "out" will write to Y.DAT
 - * choose "overwrite" (if needed) to replace old Y.DAT
 - * step 10000 cy(cles)
 - * quit

- view output data (Matlab again)
- load56(); loads X.DAT and Y.DAT, then makes graphs (simple or FFT if X.DAT was a delta)
- Use "Uruchom" in SciTe menu to load *project*.CLD into EMU BOX and check if it works
 - $\ast\,$ connect signal source to "In1"
 - $\ast\,$ connect "Out1" to the oscilloscope
 - $\ast\,$ remember that A/D and D/A introduce 0.7 ms delay

Experiments

1. translate, simulate and execute a simple program for division by 2

```
org p:$100 ;program start address (lower are reserved)
init; init codec
repeat
in a; read a sample into a
asr a; arithmetic shift right
nop;
out a;
forever
```

Test with sinusoid (sin(1:100) in Matlab, generator of 2 kHz in hardware)

- 2. Change program to:
 - multiply signal by 2
 - rectify signal

3. understand, translate, simulate and execute a simple FIR filter program (C5_FIR7.ASM) $\,$

- try to understand program design
- sketch filter structure graph
- make a sketch/sketches showing usage of data buffer samples
- check amplitude characteristics of simulated filter (FFT of an impulse response what important assumption we make?)
- use generator and oscilloscope to verify the characteristics in few frequency points
- use wobbuloscope (Anator with "Device" → "Network analyzer" set from the menu) to measure characteristics
- 4. understand, translate, simulate and execute a simple IIR filter program (C5_IIR3.ASM)
 - try to understand program design; what purpose does the buffer **states** serve?
 - sketch filter structure graph
 - use Matlab to plot filter characteristics (theoretical from coefficients)
 - check amplitude characteristics of simulated filter
 - use generator and oscilloscope to verify the characteristics in few frequency points
 - use wobbuloscope to measure characteristics
- 5. Design a coefficient set for different characteristics and verify it with real filter

File: lab6emubox $\ensuremath{\mathbb{P}}\xspace{TE}\xspaceXed on December 29, 2006$