EDISP 2003/2004 - Final exam 0, 26.01.2004

1. (12p) An ideal LP filter has the frequency characteristics

$$
A(\theta)=\left\{\begin{array}{ccc}
1 & \text { for } & -\theta_{g}<\theta<\theta_{g} \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) calculate impulse response of such a filter, assuming:
i. $\phi(\theta)=$ const $=0$
ii. $\phi(\theta)=-K \theta$ ($K-$ an integer)
(b) describe the procedure to design a causal FIR filter by approximating the ideal impulse response
(c) how does the transition band width depend on the filter order when a rectangular window is used in the procedure?
2. (12p) A filter is described by an equation $y(n)=a \cdot y(n-1)+b \cdot x(n)(a, b$ are real, $x[n]$ - input signal, $y[n]$ - output signal)
(a) Sketch the graph of this filter
(b) Calculate the transfer function $H(z)$, find zeros and poles, find impulse response, find how the stability depends on a, b.
(c) Let $a=1 / 2$. Calculate the response for an input signal $(n \in-\infty \ldots+\infty)$:

$$
\begin{aligned}
& \text { i. } x(n)=\text { const }=3 \\
& \text { ii. } x(n)=3 \cdot(-1)^{n}
\end{aligned}
$$

3. (12p) $x(t)$ is a continuous-time, periodic signal with limited mean power and with known period T. The signal is periodically sampled with period $t_{s}=T / K(K>0$ and is an integer) to obtain a DT signal $x[n]$.
(a) Calculate the period of $x[n]$
(b) Assuming $x(t)$ is harmonic, calculate the frequency of $x[n]$ (in radians per sample)
(c) If N is the period of $x[n]$, make a sketch showing the difference between N and $2 N$ point DFT of $x[n]$ (assume that the signal is periodic, but not necessarily harmonic)
(d) Is it necessary to assume the $x(t)$ is band-limited for answering a) - c)? Present your reasoning.
4. (6x3p) Tricky questions. Be careful and exact with answers, summation ranges etc.
(a) How many real number multiplications do we need to calculate 8-point DFT of a real signal, using FFT algorithm? Don't count sign-change as multiplication. How is the number reduced if we exploit the result symmetry?
(b) How do we reconstruct a signal $x(n)$ from its DCT coefficients $X^{c}(k)$? Write the equation. (Don't try to use FFT...)
(c) What is the period of $\cos \left(\frac{3 \pi}{8} n\right)$?
(d) A filter $y(n)=x(n)+x(n-1)(x$-input, y-output) filters a white noise signal $\xi(n)$ with zero mean and standard deviation $\sigma_{\xi}=2$. Calculate the standard deviation of output signal σ_{η}.
(e) A Bartlett window of length $2 N-1$ is a convolution of two rectangular windows of length N. Calculate the mainlobe width of the Bartlett window.
(f) Why does a digital signal processor need three separate memory banks? Explain clearly, present an example.
$\Sigma=54 p T=90 \mathrm{~min}, \lambda=0.6 \frac{p}{\text { min }}$
