Number sequence (or DT signal) operations; basic sequences

operation	notation	definition
sum	$z[n]=x[n]+y[n]$	$\forall n z(n)=x(n)+y(n)$
scale	$z[n]=\alpha \cdot y[n]$	$\forall n z(n)=\alpha \cdot y(n)$
shift	$z[n]=x\left[n-n_{0}\right]$	$\forall n z(n)=x\left(n-n_{0}\right)$
difference	$z[n]=x[n]-y[n]$	$\forall n z(n)=x(n)-y(n)$
product	$z[n]=x[n] \cdot y[n]$	$\forall n z(n)=x(n) \cdot y(n)$

Unit sample sequence (DT impulse)

$$
\delta[n]=u[n]-u[n-1]
$$

Unit step sequence

$$
u[n]=\sum_{k=0}^{\infty} \delta[n-k]
$$

DT systems

A DT system: an operator mapping an input sequence $x[n]$ into an output sequence $y[n]$.

$$
y[n]=T\{x[n]\}
$$

\longrightarrow A rule (formula) for computing output sequence values $y(n)$ from the input sequence values $x(n)$.

Implementations:

- PC program
- matlab m-file
- custom VLSI or FPGA
- programmable digital signal processor

Linear \& time-invariant DT systems

Linearity property

$$
T\left\{\alpha_{1} x_{1}[n]+\alpha_{2} x_{2}[n]\right\}=\alpha_{1} T\left\{x_{1}[n]\right\}+\alpha_{2} T\left\{x_{2}[n]\right\}
$$

in other words:
if
$x_{1}[n]$
$x_{2}[n]$$\quad \longrightarrow \quad y_{1}[n]$
then

$$
\begin{array}{llll}
\alpha x_{1}[n] & \longrightarrow & \alpha y_{1}[n] & \text { (scaling, homogeneity) } \\
x_{1}[n]+x_{2}[n] & \longrightarrow & y_{1}[n]+y_{2}[n] & \text { (additivity) }
\end{array}
$$

Time invariance (shift invariance)
If

$$
T\{x[n]\}=y[n]
$$

then

$$
\forall n_{0}, \quad T\left\{x\left[n-n_{0}\right]\right\}=y\left[n-n_{0}\right]
$$

Linear systems - examples

- $y(n)=3 \cdot x(n)-$ is linear; it is also memoryless
- $y(n)=\frac{x(n)+x(n-1)}{2}$ (not memoryless):

$$
\begin{aligned}
& T\left\{\alpha_{1} x_{1}(n)+\alpha_{2} x_{2}(n)\right\}=\frac{\left[\alpha_{1} x_{1}(n)+\alpha_{2} x_{2}(n)\right]+\left[\alpha_{1} x_{1}(n-1)+\alpha_{2} x_{2}(n-1)\right]}{2}= \\
& =\frac{\alpha_{1} x_{1}(n)+\alpha_{1} x_{1}(n-1)}{2}+\frac{\alpha_{2} x_{2}(n)+\alpha_{2} x_{2}(n-1)}{2}= \\
& =\alpha_{1} \frac{x_{1}(n)+x_{1}(n-1)}{2}+\alpha_{2} \frac{x_{2}(n)+x_{2}(n-1)}{2}=\alpha_{1} y_{1}(n)+\alpha_{2} y_{2}(n) \text { cnd }
\end{aligned}
$$

(not L) $y(n)=(x(n))^{2}$ because

$$
T\left\{x_{1}(n)+x_{2}(n)\right\}=\left(x_{1}(n)+x_{2}(n)\right)^{2}=\left(x_{1}(n)\right)^{2}+\left(x_{2}(n)\right)^{2}+\left[2 \cdot x_{1}(n) x_{2}(n)\right]
$$

shift example

Input signals $x[n-k]$.

Responses $T\{x[n-k]\}$ of T system $T\{$.

Other properties: causality, stability

causality

$\longrightarrow y\left(n_{0}\right)$ depends only on $x(n), n \leq n_{0}$ (usually less important in DT implementations)
stability
\longrightarrow bounded input causes bounded output [BIBO]
bounded $\longrightarrow \exists B_{x}: \forall n|x(n)| \leq B_{x}<\infty$

Examples

Decimator (compressor)

$$
y(n)=x(M n)
$$

$\longrightarrow \mathrm{L}$, but not TI (prove it!)

1-st order difference
forward: $y(n)=x(n+1)-x(n) \longrightarrow$ noncausal
backward: $y(n)=x(n)-x(n-1) \longrightarrow$ causal

Accumulator

$$
y(n)=\sum_{k=-\infty}^{n} x(k)
$$

\longrightarrow unstable; (hint: feed it with $u[n]$)

LTI systems: impulse response

$h[n]=T\{\delta[n]\} \longrightarrow$ impulse response of $T\{$.
$h[n]$ characterizes completely system $T\{$.$\} - we may compute its response for any input x[n]$.

- Decompose $x[n]$ into weighted sum of impulses $\delta[n-k]$

$$
x[n]=\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]
$$

- Superpose responses (use LTI
 properties)

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

\longrightarrow this is a convolution sum

Convolution example

(see scanned handcrafted version)

Convolution properties

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

we denote as

$$
y[n]=x[n] * h[n]
$$

Properties of "*"
" $*$ " is commutative: $x[n] * h[n]=h[n] * x[n]$
"*" distributes over addition $x[n] *\left(h_{1}[n]+h_{2}[n]\right)=x[n] * h_{1}[n]+x[n] *\left(h_{2}[n]\right)$

System and $h[n]$

- causality $\Leftrightarrow h[n]=0, n<0$. A hint: $y(n)=\sum_{k=-\infty}^{\infty} h(k) x(n-k)$
- stability $\Leftrightarrow S=\sum_{k=-\infty}^{\infty}|h(k)|<\infty$

Linear difference equations

... describe an important class of LTI systems.

$$
\sum_{k=0}^{N} a_{k} y(n-k)=\sum_{k=0}^{M} b_{k} x(n-k), \quad a_{0}=1 \text { (traditionally) }
$$

or

$$
\begin{aligned}
& y(n)= \\
&+a_{1} \cdot y(n-1)-a_{2} \cdot y(n-2)-\ldots-a_{n} \cdot y(n-N)+ \\
&++b_{1} \cdot x(n-1)+b_{2} \cdot x(n-2)+\ldots+b_{n} \cdot x(n-M)
\end{aligned}
$$

Note: if, for a given input $x_{p}[n]$, an output sequence $y_{p}[n]$ satisfies given difference equation,

$$
y[n]=y_{p}[n]+y_{h}[n]
$$

will also satisfy the equation, if $y_{h}[n]$ is a solution to $\sum_{k=0}^{N} a_{k} y(n-k)=0$ (homogenous equation).

Difference equation - example

An equation: $y(n)=a \cdot y(n-1)+x(n)$ with input
$x(n)=0, n<0$
$x(n) \neq 0, n>0$.

$$
\begin{aligned}
& y(0)=a \cdot \mathbf{y}(-\mathbf{1})+x(0) \\
& y(1)=a \cdot y(0)+x(1) \\
& y(2)=a \cdot y(1)+x(2)
\end{aligned}
$$

Initial condition: $y(-1)=\alpha$
Let $x[n]=\delta[n]$

$$
\begin{aligned}
y(0) & =a \cdot \alpha+1 \\
y(1) & =a(a \cdot \alpha+1)=a^{2} \alpha+a \\
y(2) & =a^{3} \alpha+a^{2} \\
& \cdots \\
y(n) & =a^{n+1} \alpha+a^{n}
\end{aligned}
$$

$y(n)=a \cdot y(n-1)+x(n)$
Initial condition: $y(-1)=\alpha x[n]=\delta[n]$
Solution: $y(n)=a^{n+1} \alpha+a^{n}$
Find a homogenous part!
Stability:

$$
\begin{array}{ll}
1<a: & a^{n} \rightarrow \infty \\
0<a<1: & a^{n} \rightarrow 0 \\
-1<a<0: & a^{n} \rightarrow 0 \\
a<-1: & a^{n} \rightarrow ? ? ?
\end{array}
$$

$$
a=-1.1
$$

