Frequency in a DT signal

	CD audio system	DAT audio system
Sampling:	44100 Hz	48000 Hz
Nyquist:	22050 Hz	24000 Hz
t_{s}	$22.676 \mu \mathrm{~s}$	$20.833 \mu \mathrm{~s}$
1 kHz : samples per period	44.1	48
1 kHz : moved from CD to DAT	1 kHz	$48 / 44.1=1.0884 \mathrm{kHz}$

We need a good definition of frequency!

DT signal frequency concept

Continuous time cosine:

$$
\begin{gathered}
x_{a}(t)=\cos \omega t \\
\omega=2 \pi f \\
\\
T=\frac{1}{f}=\frac{2 \pi}{\omega} \\
x(t)=x(t+k T)
\end{gathered}
$$

$$
\omega \in \mathrm{R}
$$

$$
\begin{array}{c|c}
\text { Discrete time cosine: } & \\
x(n)=\cos \omega n t_{s} & t=n t_{s} \\
x(n)=\cos 2 \pi f n \frac{1}{f_{s}} & f_{n}=\frac{f}{f_{s}} \\
x(n)=\cos \theta n & \theta=2 \pi \frac{f}{f_{s}}
\end{array}
$$

$$
\text { Always } \quad \leftarrow \text { periodic } \rightarrow
$$

Normalized angular frequency θ : interval of 2π may be assumed as $[0,2 \pi)$ or $[-\pi, \pi)$.

$$
\cos n(\theta+k \cdot 2 \pi)=\cos (n \theta+n \cdot k \cdot 2 \pi)=\cos n \theta
$$

Periodicity example

Fourier spectrum of a limited energy signal

$$
\sum_{n=-\infty}^{\infty}|x(n)|^{2}<\infty
$$

$X\left(e^{j \theta}\right)$ - a continuous, periodic function.

Fourier spectrum definition:

$$
x(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \theta}\right) e^{j n \theta} d \theta
$$

$$
X\left(e^{j \theta}\right)=\sum_{n=-\infty}^{\infty} x(n) e^{-j n \theta}
$$

\longrightarrow inverse transform

Linearity: $\quad a x[n]+b y[n] \stackrel{\mathcal{F}}{\longleftrightarrow} a X\left(e^{j \theta}\right)+b Y\left(e^{j \theta}\right)$
Time shift: $\quad x\left[n-n_{0}\right] \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-j n_{0} \theta} X\left(e^{j \theta}\right)$,
Frequency shift: $e^{-j n \theta_{0}} x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X\left(e^{j\left(\theta-\theta_{0}\right)}\right)$
Convolution: $\quad x[n] * y[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X\left(e^{j \theta}\right) \cdot Y\left(e^{j \theta}\right)$,
Modulation: $\quad x[n] \cdot y[n] \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{2 \pi} \int_{0}^{2 \pi} X\left(e^{j \phi}\right) \cdot Y\left(e^{j \theta-\phi}\right) d \phi$
(Parseval's): $\quad E=\sum_{n=-\infty}^{\infty}|x(n)|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|X\left(e^{j \theta}\right)\right|^{2} d \theta$

Example

We sample $x_{a}(t)$ with $T_{s}=T / L$

$$
\begin{aligned}
& x_{a}(t)=\left\{\begin{array}{ccc}
1 & \text { for } & 0 \leq t<T \\
0 & \text { for } & \text { other } t
\end{array} \quad x[n]=\left\{\begin{array}{ccc}
1 & \text { for } & n=0,1, \ldots, L-1 \\
0 & \text { for } & \text { other } n
\end{array}\right.\right. \\
& X_{a}(\omega)=\int_{-\infty}^{\infty} x_{a}(t) e^{-j \omega t} d t \quad X\left(e^{j \theta}\right)=\sum_{n=-\infty}^{\infty} x(n) e^{-j n \theta} \\
& X_{a}(\omega)=T \frac{\sin (\omega T / 2)}{\omega T / 2} e^{-j \omega T / 2} \\
& X\left(e^{j \theta}\right)=e^{-j(L-1) \theta / 2} \frac{\sin (L \theta / 2)}{\sin (\theta / 2)} \\
& \text { (hint: } \left.\left(\sum_{n=0}^{N-1} q^{n}=\left(1-q^{N}\right) /(1-q)\right)\right) \\
& \text { a) } \\
& \text { b) } \prod_{0}^{4} \llbracket \llbracket\left[\prod_{L-i}^{x[n]} \rightarrow \prod_{n}\right.
\end{aligned}
$$

Periodic (limited mean power) signal FT

$$
\frac{1}{N} \sum_{n=0}^{N-1}|x(n)|^{2}<\infty
$$

Fourier spectrum definition:

$$
x(n)=\frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j 2 \pi k n / N}
$$

$$
X(k)=\sum_{n=0}^{N-1} x(n) e^{-j 2 \pi k n / N}, \quad-\infty<k<\infty
$$

\longrightarrow inverse transform

We represent $x[n]$ as a sum of N complex discrete harmonics with angular frequencies $\theta_{k}=\frac{2 \pi}{N} \cdot k, \quad k=0,1, \ldots, N-1$

Example

$x_{p}[n]$ with period $N=10$ has $L=5$ nonzero samples $(n=0,1, \ldots L-1)$
$X(k)=\sum_{n=0}^{N-1} x_{p}(n) \mathrm{e}^{-\mathrm{j} 2 \pi k n / N}=\sum_{n=0}^{L-1} \mathrm{e}^{-\mathrm{j} 2 \pi k n / N}=\mathrm{e}^{-\mathrm{j}(L-1) \pi k / N} \frac{\sin (L \pi k / N)}{\sin (\pi k / N)}, \quad k=0,1, \ldots$

The amplitude spectrum $|X[k]|=\left|\frac{\sin \left(L \theta_{k / 2}\right)}{\sin \left(\theta_{k} / 2\right)}\right|, \quad \theta_{k}=2 \pi k / N$ is shown
a)

b)

Discrete Fourier Transform

- A signal $x[n]$ defined for $-\infty<n<\infty$
- Its spectrum $X\left(e^{j \theta}\right)$ defined for continuous $0 \leq \theta<2 \pi$
- Life is short ...
\longrightarrow Let us take a fragment of $x[n]: x_{0}[n], n=0,1, \ldots, N-1$

$$
x_{0}[n]=x[n] g[n], \text { where } g[n]=\left\{\begin{array}{ccc}
1 & \text { for } & n=0,1, \ldots, N-1 \\
0 & \text { for } & \text { others } n
\end{array}\right.
$$

$g[n]$ - window (gate?) function (here: a rectangular window) (w[n] we reserve for white noise)
\longrightarrow We take only N values of $\theta_{k}=\frac{2 \pi}{N} k, \quad k=0,1, \ldots, N-1$

$$
X_{0}\left(\mathrm{e}^{\mathrm{j} \theta_{k}}\right)=\sum_{n=0}^{N-1} x_{0}(n) \mathrm{e}^{-\mathrm{j} n \theta_{k}}=\sum_{n=0}^{N-1} x_{0}(n) \mathrm{e}^{-\mathrm{j} 2 \pi n k / N}
$$

Inverse DFT

Let's take forward DFT definition as a linear equation set, with $x_{0}[n]$ as unknowns. When we multiply both sides by $\mathrm{e}^{\mathrm{j} 2 \pi r k / N}, r=0,1, \ldots, N-1$ and sum for $k=0,1, \ldots, N-1$

$$
\begin{gathered}
\sum_{k=0}^{N-1} X_{0}(k) \mathrm{e}^{\mathrm{j} 2 \pi r k / N}=\sum_{k=0}^{N-1}\left[\sum_{n=0}^{N-1} x_{0}(n) \mathrm{e}^{-\mathrm{j} 2 \pi n k / N}\right] \mathrm{e}^{\mathrm{j} 2 \pi r k / N}= \\
=\sum_{k=0}^{N-1} \sum_{n=0}^{N-1} x_{0}(n) \mathrm{e}^{\mathrm{j} 2 \pi k(r-n) / N}=\sum_{n=0}^{N-1} x_{0}(n) \sum_{k=0}^{N-1} \mathrm{e}^{\mathrm{j} 2 \pi k(r-n) / N} \\
\sum_{k=0}^{N-1} \mathrm{e}^{\mathrm{j} 2 \pi k(r-n) / N}=\left\{\begin{array}{cc}
N, & r=n \\
0, & r \neq n
\end{array} \Rightarrow \sum_{k=0}^{N-1} X_{0}(k) \mathrm{e}^{\mathrm{j} 2 \pi r k / N}=N x_{0}(r), \quad r=0,1, \ldots, N-1\right. \\
x_{0}(n)=\frac{1}{N} \sum_{k=0}^{N-1} X_{0}(k) \mathrm{e}^{\mathrm{j} 2 \pi n k / N}, \quad n=0,1, \ldots, N-1
\end{gathered}
$$

DFT properties

Orthogonality - (see next slide)

Periodicity As we sample the spectrum, the reconstructed signal is periodic with period N. If we compute IDFT for $-\infty<n<\infty \ldots$

- A non-periodic signal was reconstructed as periodic
- A periodic signal was reconstructed as N-periodic

DFT as an orthogonal transform

An orthogonal transform (e.g. DFT) is a decomposition of a function (signal) on a set of orthogonal basis functions $\phi_{k}[n]$.

$$
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} A(k) \cdot \phi_{k}[n]
$$

Because of $\phi_{k}[n]$ orthogonality, $A(k)$ are easy to calculate:

$$
A(k)=\sum_{n=0}^{N-1} x(n) \cdot \phi_{k}^{*}(n)
$$

Basis sequences (transform kernel) have to be orthogonal:

$$
\frac{1}{N} \sum_{k=0}^{N-1} \phi_{k}(n) \cdot \phi_{m}^{*}(n)=\left\{\begin{array}{ll}
1 & m=k \\
0 & \text { otherwise }
\end{array}\right. \text { Scalar product is zero = orthogonal! }
$$

DFT basis functions $\phi_{k}(n)=\mathrm{e}^{-\mathrm{j} n \theta_{k}}=\mathrm{e}^{-\mathrm{j} 2 \pi n k / N}$ are orthogonal - we chose θ_{k} so it be!

