EDISP (FFT) (English) Digital Signal Processing FFT lecture

November 5, 2007

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … 釣�?

Fast DFT algorithms \longrightarrow FFT

• Direct computation with pre-computed $W_N = e^{-j2\pi/N}$ (twiddle factors):

$$X\left(e^{j\theta_{k}}\right) = \sum_{n=0}^{N-1} x(n) W_{N}^{kn}$$

 \longrightarrow complexity: N^2

• Goertzel algorithm: $X(k) = y_k(N)$, where

$$y_k(n) = \sum_{r=0}^{N-1} x(r) W_N^{-k(n-r)}$$

 \longrightarrow filtering: $y_k(n) = x(n) + y_k(n-1) \cdot W_n^{-k}$

Decimation in time FFT (first stage):

$$X(k) = \sum_{n \in V} x(n) W_N^{nk} + \sum_{n \in V} x(n) W_N^{nk} =$$

=
$$\sum_{r=0}^{N/2-1} x(2r) (W_{N/2})^{rk} + W_N^k \sum_{r=0}^{N/2-1} x(2r+1) (W_{N/2})^{rk}$$

radix-2 FFT

$$X(k) = \sum_{n \in \text{ven}} x(n) W_N^{nk} + \sum_{n \text{ odd}} x(n) W_N^{nk} =$$

$$N/2-1 \qquad N/2-1$$

$$\sum_{r=0}^{N-1} x(2r)(W_{N/2})^{rk} + W_N^k \sum_{r=0}^{N-1} x(2r+1)(W_{N/2})^{rk}$$

• for
$$k > N/2$$
, $W_N^k = -W_N^{k-N/2}$

DFT with size 1 is rather trivial

Effect: We have *L* layers of N/2 butterflies. Each butterfly is one multiplication, one addition, one subtraction. In the result, we have $O(N\log_2 N)$ operations

FFT inventors

James W. Cooley and John W. Tukey, "An algorithm for the machine calculation of complex Fourier series," Math. Comput. 19, pp. 297-301 (1965).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

▲□▶▲圖▶▲≧▶▲≧▶ 差 のへで

Indexing for FFT

How to describe the sequence of numbers: 0, 4, 2, 6, 1, 5, 3, 7?

- $0 = 000_2$ is at position 000_2
- 4 = 100₂ is at position 001₂
- 2 = 010₂ is at position 010₂
- 6 = 110₂ is at position 011₂
- 1 = 001₂ is at position 110₂
- 5 = 101₂ is at position 101₂
- 3 = 011₂ is at position 110₂
- 7 = 111₂ is at position 111₂

 \longrightarrow bit-reversal does the job!

Processors designed for FFT do have the bit-reversal mode of indexing. (And they do a butterfly in one or two cycles)

Decimation in frequency FFT

- We split the definition formula for k even (=2r) or odd (=2r+1)
- We note that $W_N^{2nr} = W_{N/2}^{nr}$ or $W_N^{n(2r+1)} = W_N^n \cdot W_{N/2}^{nr}$

Further, for
$$n > N/2$$
 $W_N^n = -W_N^{n-N/2}$

and so on - please sketch the DIF FFT diagram by yourselves

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 \longrightarrow here, we need to re-index the frequencies...

Specials

- Non-radix2 FFT slower than radix2, but still faster than direct
- Chirp-z transform one use of it is to calculate FT for θ 's not equal to $2\pi/N$
- Non-uniform FFT ...
- FFTW the Fastest FFT in the West a free library, used by many free and commercial products (Frigo & Johnson from MIT)

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

DFT resolution

- ► N-point DFT \longrightarrow frequency sampled at $\theta_k = \frac{2\pi k}{N}$, so the resolution is f_s/N
- If we want more, we use $N_1 > N$ filling with zeros (zero-padding)
- but IDFT will give N₁-periodic signal
- and the spectrum will have sidelobes

Summary

- DTFT spectrum of a discrete-time signal (defined for a limited-energy signal or a limited mean power signal in a different manner) periodic, continuous or discrete function of θ
- DFT samples of DTFT of a limited duration signal (or a segment....) periodic, discrete X(k)

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

FFT - a trick (method[s]) to compute DFT efficiently