
EDISP (FFT)
(English) Digital Signal Processing

FFT lecture

November 5, 2007



Fast DFT algorithms −→ FFT
I Direct computation with pre-computed WN = e−j2π/N (twiddle factors) :
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−→ complexity: N2

I Goertzel algorithm: X(k) = yk (N), where
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−→ filtering: yk(n) = x(n)+ yk (n−1) ·W−k
n

I Decimation in time FFT (first stage):
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radix-2 FFT
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I If N = 2L . . . We can continue with this trick -
decimating each half into sub-halves, each
sub-half into sub-sub . . . L times

I for k > N/2, W k
N =−W k−N/2

N

I DFT with size 1 is rather trivial

Effect: We have L layers of N/2 butterflies. Each but-
terfly is one multiplication, one addition, one subtrac-
tion. In the result, we have O(N log2 N) operations

FFT inventors

James W. Cooley and John W. Tukey, ”An algorithm for the machine calcula-
tion of complex Fourier series,” Math. Comput. 19, pp. 297-301 (1965).



8-point radix-2 FFT

8−point DFT
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8-point radix-2 FFT
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8-point radix-2 FFT
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8-point radix-2 FFT
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Indexing for FFT

How to describe the sequence of numbers: 0, 4, 2, 6, 1, 5, 3, 7?
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I 0 = 0002 is at position 0002

I 4 = 1002 is at position 0012

I 2 = 0102 is at position 0102

I 6 = 1102 is at position 0112

I 1 = 0012 is at position 1102

I 5 = 1012 is at position 1012

I 3 = 0112 is at position 1102

I 7 = 1112 is at position 1112

−→ bit-reversal does the job!
Processors designed for FFT do have the bit-reversal mode of indexing. (And
they do a butterfly in one or two cycles)



Decimation in frequency FFT

I We split the definition formula for k even (= 2r) or odd (= 2r +1)

I We note that W 2nr
N = W nr

N/2 or W n(2r+1)
N = W n

N ·W nr
N/2

I Further, for n > N/2 W n
N =−W n−N/2

N

I and so on - please sketch the DIF FFT diagram by yourselves

−→ here, we need to re-index the frequencies...



Specials

I Non-radix2 FFT - slower than radix2, but still faster than direct
I Chirp-z transform - one use of it is to calculate FT for θ’s not equal to

2π/N
I Non-uniform FFT . . .
I FFTW - the Fastest FFT in the West - a free library, used by many free

and commercial products (Frigo & Johnson from MIT)



DFT resolution

I N-point DFT −→ frequency sampled at θk = 2πk
N , so the resolution is

fs/N
I If we want more, we use N1 > N filling with zeros (zero-padding)
I but IDFT will give N1-periodic signal
I and the spectrum will have sidelobes

More
at the next lecture. . .



Summary

I DTFT - spectrum of a discrete-time signal (defined for a limited-energy
signal or a limited mean power signal in a different manner) periodic,
continuous or discrete function of θ

I DFT - samples of DTFT of a limited duration signal (or a segment....)
periodic, discrete X(k)

I FFT - a trick (method[s]) to compute DFT efficiently


