EDISP (Win + FFT app)
 (English) Digital Signal Processing
 Windowing and FFT applications lecture

November 6, 2007

Limited observation time

For DFT we used to cut a fragment of the signal

$$
x_{0}[n]=x[n] g[n], \text { where } g[n]= \begin{cases}1 & \text { for } \\ 0 & \text { for } \\ 0,1, \ldots, N-1 \\ \text { other } n\end{cases}
$$

$g[n]$ is a window function. Here - a boxcar window Window effect:

- selection of a signal fragment
- $x[n] \cdot g[n]$ in time $\longrightarrow X(\theta) * G(\theta)$ in spectral domain \longrightarrow sidelobes or spectral leakage

Leakage example

Window (apodization) functions

Raised cosine window family

- Hann window: Julius von Hann, 1839 - 1921, Austrian meteorologist; hanning is a verb form (to hann) $w(n)=0.5\left(1-\cos \left(\frac{2 \pi n}{N-1}\right)\right)$
- Hamming window: Richard Hamming, 1915 - 1998, American mathematician; $w(n)=0.53836-0.46164 \cos \left(\frac{2 \pi n}{N-1}\right)$
- Blackman window $w(n)=0.42-0.5 \cos \left(\frac{2 \pi n}{N-1}\right)+0.08 \cos \left(\frac{4 \pi n}{N-1}\right)$

Kaiser window

(D. Slepian, H.O. Pollak, H.J. Landau, around 1961, Prolate spheroidal wave functions...)

- time limited sequence with energy concentrated in finite frequency interval
- a family of windows with many degrees of freedom
- Kaiser (1974) - an approximation to optimal window: standard method to compute the optimal window was numerically ill-conditioned.

$$
w_{n}=\left\{\begin{array}{cc}
\frac{l_{0}\left(\alpha \sqrt{1-\left(\frac{2 n}{N}-1\right)^{2}}\right)}{I_{0}(\alpha)} & \text { if } 0 \leq n \leq N \\
0 & \text { otherwise }
\end{array}\right.
$$

I_{0} - zeroth order modified Bessel function of the first kind,

- α (real number) determines the shape of the window:
- $\alpha=0$ gives Boxcar,
- $\alpha=4$ gives -30 dB first sidelobe, -50 asymptotic,
- $\alpha=8$ gives -60 dB first sidelobe, -90 asymptotic,

Kaiser window

Calculating convolution by FFT

When one signal is loooooong. . .

- Cut signal in pieces
- for each piece
- calculate its FFT
- multiply by FFT of the other signal
- calculate the IFFT
- put pieces together (beware of circular convolution)
- overlap-save method
- overlap-add method

Never use windows with it! < joke $>$ Use Linux $</$ joke $>$

Circular convolution (problem)

Circular convolution (problem solved at some cost)

Linear convolution with help of circular

Overlap-save

see the blackboard (;-)

Overlap-add

from Wikipedia

