EDISP (Z-transform)
 (English) Digital Signal Processing
 Z-Transform lecture

November 19, 2007

z-transform

Z - a generalization of DTFT, similar to \mathcal{L} as a generalization of CTFT

$$
x(z)=\sum_{n=-\infty}^{\infty} x(n) z^{-n}
$$

\longrightarrow DTFT is equal to $X(z)$ at unit circle $z=e^{j \theta}$
Convergence: same as for DTFT of $x[n] \cdot r^{-n}$ (substitute $z=r \cdot e^{j \theta}$)

$$
\sum_{n=-\infty}^{\infty}\left|x(n) r^{-n}\right|<\infty
$$

example: $u[n]$ is not absolutely summable; $u(n) \cdot r^{-n}$ can be, if $\left|r^{-1}\right|<1$
$\longrightarrow Z(u[n])$ is convergent for $r>1$.

Properties:

- Linearity,
- shift $x\left(n-n_{0}\right) \stackrel{z}{\longleftrightarrow} z^{-n_{0}} \cdot X(z)$,
- multiplication $z_{0}^{n} \cdot x(n) \stackrel{z}{\longleftrightarrow} X\left(z / z_{0}\right)$,
- transform differentiation $n x(n) \stackrel{z}{\longleftrightarrow}-z d X(z) / d z$,
- conjugation $x^{*}(n) \stackrel{z}{\longleftrightarrow} X^{*}\left(z^{*}\right)$,
- time reversal $x(-n) \stackrel{z}{\longleftrightarrow} X(1 / z)$,
- initial value $x(0)=\lim _{z \rightarrow \infty} X(z)$ if $x(n)=0$ for $n<0$ (hint: limit of each term ...)
- multiplication $x_{1}(n) \cdot x_{2}(n) \stackrel{z}{\longleftrightarrow} 1 /(2 \pi j) \oint_{C} X_{1}(v) X_{2}(z / v) v^{-1} d v$ complex! convolution

Examples

- $x(n)=a^{n} u(n)$ (causal)

$$
X(z)=\sum_{n=-\infty}^{\infty} a^{n} u(n) z^{-n}=\sum_{n=0}^{\infty}\left(a z^{-1}\right)^{n}=\frac{1}{1-a z^{-1}}=\frac{z}{z-a}, \quad|z|>|a|
$$

- $x(n)=-a^{n} u(-n-1)$ (non-causal)

$$
X(z)=-\sum_{n=-\infty}^{-1}\left(a z^{-1}\right)^{n}=1-\sum_{n=0}^{\infty}\left(a^{-1} z\right)^{n}=\frac{1}{1-a z^{-1}}=\frac{z}{z-a},|z|<|a|
$$

- $x(n)=\left\{\begin{array}{cc}a^{n} & n=0,1, \ldots, N-1 \\ 0 & \text { otherwise }\end{array}\right.$ (finite)

$$
X(z)=\sum_{n=0}^{N-1} a^{n} z^{-n}=\sum_{n=0}^{N-1}\left(a z^{-1}\right)^{n}=\frac{1-\left(a z^{-1}\right)^{N}}{1-\left(a z^{-1}\right)}=\frac{1}{z^{N}-1} \frac{z^{N}-a^{N}}{z-a}
$$

Inverse z - transform

$$
x(n)=\frac{1}{2 \pi j} \oint_{C} X(z) z^{n-1} d z
$$

- Partial fraction expansion: $X(z)$ a rational function with M zeros and N poles,

$$
X(z)=\sum_{r=0}^{M-N} B_{r} \cdot z^{-r}+\sum_{k=1}^{N} \frac{A_{k}}{1-d_{k} z^{-1}}, \quad A_{k}=\left.\left(1-d_{k} z^{-1}\right) \cdot X(z)\right|_{z=d_{k}}
$$

- Power series expansion (e.g for finite series)

Z-transform of a convolution

$$
\begin{aligned}
& y[n]= x[n] * h[n] \longrightarrow y(n)=\sum_{k=-\infty}^{+\infty} x(k) \cdot h(n-k) \\
& Y(z)=\sum_{n=-\infty}^{+\infty}\left[\sum_{k=-\infty}^{+\infty} x(k) \cdot h(n-k)\right] z^{-n}= \\
&=\sum_{k=-\infty}^{+\infty}\left[x(k) \sum_{n=-\infty}^{+\infty} h(n-k) z^{-n}\right]= \\
&(\text { we substitute } m=n-k \text { so } n=k-m) \\
&=\sum_{k=-\infty}^{+\infty}\left[x(k) \sum_{m=-\infty}^{+\infty} h(m) z^{-k-m}\right]= \\
&=\sum_{k=-\infty}^{+\infty} x(k) z^{-k} \sum_{m=-\infty}^{+\infty} h(m) z^{-m} \\
& Y(z)=X(z) \cdot H(z)
\end{aligned}
$$

And this is the main application of z-transform.

Z-transform and difference equations (1)

$$
\sum_{k=0}^{N} a_{k} y(n-k)=\sum_{k=0}^{M} b_{k} x(n-k)
$$

$a_{0}=1$ traditionally
Simpler case of $N=0$ (FIR, no recursion)

$$
\begin{aligned}
y(n) & =\sum_{k=0}^{M} b_{k} x(n-k) \\
Y(z) & =\sum_{k=0}^{M} b_{k} Z[x(n-k)]= \\
& =\sum_{k=0}^{M} b_{k} X(z) z^{-k}= \\
& =X(z) \cdot \sum_{k=0}^{M} b_{k} z^{-k}= \\
& =X(z) \cdot H(z)
\end{aligned}
$$

Z-transform and difference equations (2)

Now the general case:

$$
\begin{array}{r}
\sum_{k=0}^{N} a_{k} y(n-k)=\sum_{k=0}^{M} b_{k} x(n-k) \\
\sum_{k=0}^{N} a_{k} Y(z) z^{-k}=\sum_{k=0}^{M} b_{k} X(z) z^{-k} \\
Y(z) \sum_{k=0}^{N} a_{k} z^{-k}=X(z) \sum_{k=0}^{M} b_{k} z^{-k} \\
Y(z)=X(z) \cdot \frac{\sum_{k=0}^{M} b_{k} z^{-k}}{\sum_{k=0}^{N} a_{k} z^{-k}}
\end{array}
$$

Recall that the transform is linear, and shift is represented by $z-k$ operator.

