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How an LTI system filters signals

I A practical system and its difference equation
I Difference equation and H(z)

I Short path: system −→ H(z)

I System defined by H(z) + harmonic signal
I Is my filter stable?



System and its difference equation
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z−1 z−1

−a2

z−1

b2

b1 −a1

x[n] y [n]

y(n) = x(n)+b1x(n−1)+b2x(n−2)−a1y(n−1)−a2y(n−2)

y(n)+a1y(n−1)+a2y(n−2) = x(n)+b1x(n−1)+b2x(n−2)

2

∑
m=0

amy(n−m) =
2

∑
k=0

bk x(n− k)



Difference equation and H(z)

z−1 - shift operator

2

∑
m=0

amy(n−m) =
2

∑
k=0

bk x(n− k)

2

∑
m=0

amY (z)z−m =
2

∑
k=0

bk X(z)z−k

Y (z)
2

∑
m=0

amz−m = X(z)
2

∑
k=0

bk z−k

H(z) =
Y (z)

X(z)
=

∑
2
k=0 bk z−k

∑
2
m=0 amz−m



System and its H(z)
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Y (z) = X(z)+b1X(z)z−1 +b2X(z)z−2−a1Y (z)z−1−a2Y (z)z−2

Y (z)+a1Y (z)z−1 +a2Y (z)z−2 = X(z)+b1X(z)z−1 +b2X(z)z−2

2

∑
m=0

amY (z)z−m =
2

∑
k=0

bk X(z)z−k

H(z) =
Y (z)

X(z)
=

∑
2
k=0 bk z−k

∑
2
m=0 amz−m



H(z) to h(n) (or how to find Z−1)

H(z) =
Y (z)

X(z)
=

∑
2
k=0 bk z−k

∑
2
m=0 amz−m

=

= A
∏

2
k=0(1− ck z−1)

∏
2
m=0 amz−m(1−dmz−1)

Zeros at z = ck −→ (1− ck z−1) = z−ck
z−0 (plus pole at z = 0).

Poles at z = dm −→ 1
(1−dmz−1)

= z−0
z−dm

(plus a zero at z = 0).



System defined by H(z) + harmonic signal

x(n) = ejnθ−→ h(n) −→y(n) =?

y(n) = ∑
k

h(k) ·ej(n−k)θ =

= ∑
k

h(k) ·ej(−k)θ ·ejnθ =

= ejnθ
∑
k

h(k) ·ej(−k)θ =

= ejnθH(θ)

H(θ) = A(θ)ejφ(θ)

If x(n) is periodic - we can decompose it into harmonics (linearity).
E.g. x(n) = 3+5sin(0.1πn) −→ a DC component and a 0.1π harmonic
signal. So y(n) = A(0)∗3+A(0.1π)∗5sin(0.1πn +φ(0.1π)).



Filter stability

We may check stability:
I from impulse response ∑

∞
k=−∞ |h(k)|< ∞

I at first glance: FIR is always stable (see above)
I from H(z): a pole dk produces a term

Ak

1−dk z−1 , Ak = (1−dk z−1) ·X(z)
∣∣
z=dk

in the partial fraction expansion of H(z) ;
1

1−dk z−1 is a Z transform of dn
k u(n),

which is a stable term in h(n) if |dk |< 1.
−→ all poles must be inside unit circle |z|= 1 (for a stable causal
system)
outside for an anticausal one

I by time-domain analysis by hand (recommended only as last resort)



Filter design in practice

I FIR - window method (LP example, BP/HP howto)
I FIR - optimization methods (Parks-McClellan, called also Remez)
I IIR - bilinear transformation
I IIR - impulse/step response invariance (next lecture)
I IIR - optimization methods (next lecture)



FIR LP filter by window method

LP filter - pass from thetap to +θp

h0(n) =
1

2π

Z
θp

−θp

ejnθ dθ =
θp

π

sin nθp

n θp

Cut at order 120. Shift to be
causal.



FIR - optimization methods
Window method - simple, easy, all under strict control. But is it “best” filter for
given order?

yes a rectangular window gives best approximation in the MS sense

no we know about problems (Gibbs effect) at the discontinuities so we try to
cheat with Windows

So, Parks & Mc Clellan (1972) used Chebyshev (minimax) approximation on
discrete set of points in θ. They applied E. Ya. Remez (1934) algorithm.

Approx 12 iterations needed.



IIR - bilinear transformation
We use analog filter prototype:

I good theory
I prototype polynomials −→ known properties
I tables, methods

“Copy” a CT prototype H(s) to DT domain H(z):

I −→ substitute s = 2
Td

1−z−1

1+z−1 (trapezoidal inetgration of H(s) with step Td

I roll the jω line to ejω circle
I A point θ is mapped from ω = 2

Td
tan(θ/2)

I −→ we need to pre-warp our frequency characteristics from θ to ω

I Stability −→ left half-plane transformed into inside of unit circle (OK!)



IIR - bilinear transformation - analog prototypes

Butterworth (max. flat amplitude) Chebyshev type I

Chebyshev type II Cauer (elliptical)
Bessel - maximally flat phase



IIR - bilinear transformation - Matlab
I Filtering: y=filter(B,A,x);

B - numerator coefficients
A - denominator coefficients (if FIR −→ A = [1])
x - input samples vector

I Filter characteristics: [h, w]=freqz(B, A);
w frequency values,

abs(h) amplitude characteristics
I Filter design specification: frequency from 0.0 (−→ zero) to 1.0 (−→

fs/2)
I Window method (FIR): B = FIR2(N,F,A[, window]);

N order
F frequency points
A amplitude characteristics at points specified by F

window e.g. Bartlett(N+1) or chebwin(N+1, R)
I IIR bilinear method (Butterworth as example):

[N, wn]=buttord(Wp, Ws, Rp, Rs);
Wp, Ws passband freq, stopband freq,
Rp, Rs ripple in passband, ripple in stopband
N, wn order and 3dB point warped and adjusted
[B,A]=butter(N, wn);
does the polynomial design and bilinear transform.


