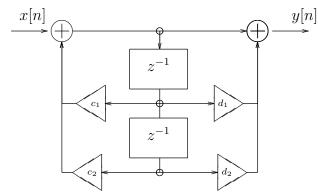

Homework2/0809+ - z-transform, inst. spectrum, filters

1. The instantaneous spectrum $X(e^{j\theta}, n)$ of a signal

$$x(n) = \begin{cases} z(n) & \text{for} \quad n = 10, \dots, 49 \\ 0 & \text{otherwise} \end{cases}$$

is computed using rectangular window g(k) of length K=10. Assume i) z(n)=1 ii) $z(n)=e^{j\theta_0\cdot n}$ iii) $z(n)=sin(\theta_0\cdot n)$


- (a) How does the mainlobe width of $X(e^{j\theta}, n)$ change with n (make approximate sketch).
- (b) What is the minimum width of the mainlobe (write an expression)
- (c) If we change K, or the window type how will the mainlobe change?
- (d) Sketch the value of $X(e^{j\theta}, n)$ versus n with $\theta = \theta_0$.
- 2. Analyze an IIR filter with graph as follows

For plots, assume a = 0.5, $n_0 = 2$

- (a) find h[n], H(z)
- (b) Plot zeros and poles of the filter
- (c) How the filter stability depends on n_0 and a?
- (d) Plot filter amplitude characteristics
- (e) Find filter response for $x(n) = 1 + cos(n\pi)$

3. Analyze a filter described by graph:

- (a) Find H(z)
- (b) Find the conditions on c_1 , c_2 , d_1 , d_2 to assure filter stability.
- (c) find h(n) for $c_1 = 0$, $c_2 = 0$, $d_1 = -2$, $d_2 = 1$
- (d) Sketch $A(\theta)$ for $c_1 = 1.8 \cdot \cos(\pi/4)$, $c_2 = -.81$, $d_1 = -2$, $d_2 = 1$.

Hint: Mark a signal after the first adder with r(n), then eliminate it from the equations.

- 4. Calculate the z-transform and its region of convergence for the following series:
 - (a) $\delta[n]$
 - (b) $u[n] u[n n_0]$
 - (c) $u[n] \cdot 0.4^n$
 - (d) $u[-n] \cdot -0.4^n$
- 5. Assuming phase equal to zero, calculate the impulse response of:
 - (a) an ideal lowpass filter with cutoff frequency of θ_b
 - (b) an ideal highpass filter with cutoff frequency of $\pi \theta_b$
 - (c) an ideal bandpass filter with passband of $\theta_c \pm \theta_b$

Then, assume $\theta_b = pi/4$ and try to design a filter with rectangular window method, with order of 7. Try to calculate the filter characteristics by hand, then check with a computer.

Additional problems...

... may be found in Oppenheim and Schafer with Buck:

- z-transform: basic problems from Chapter 3 ("The z-transform")
- filters: basic problems from Chapter 5 ("Transform analysis of LTI systems")
- filter design: first few basic problems from Chapter 7 ("Filter design techniques")
- instantaneous spectrum: problems 10.9, 10.13 10.20 (problems from Chapter 10 "Fourier analysis of signals using the DFT" that have "TDFT" or "time-dependent FT" inside)

note: if yout have other editions of O. and S., the chapter numbering will be different, but contents are similar.

File: homew2'2008plus LATEXed on January 6, 2009