EDISP
 (English) Digital Signal Processing

Jacek Misiurewicz
e-mail: jmisiure@elka.pw.edu.pl
Institute of Electronic Systems
Warsaw University of Technology
Warsaw, Poland

October 5, 2009

General information

Lectures $2 \mathrm{~h} /$ week, Tue, 14:15-16
Labs $\quad \approx 4 \mathrm{~h} / 2$ weeks: Monday $8: 15-12$, room 022. See the schedule.
First meeting for all students - Monday 12 Oct, 9:15
Contact J. Misiurewicz, (jmisiure@elka.pw.edu.pl) room 447.
Web page http://staff.elka.pw.edu.p//jmisiure/
\longrightarrow Slides on Monday evening! (usually ;-))
Homeworks Announced as a preparation for the tests.
Exams Two short tests within lecture hours (see the lab schedule) and a final exam during the winter exam session (TBA).

```
Short path if \([(s c o r e \geq 41) \& \&(t e s t s \geq 15) \& \&(t e s t 2 \geq 5)]\); then score* \(=2\); fi
```


Books

base book The course is based on selected chapters of the book:
A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall 1989 (or II ed, 1999; also previous editions: Digital Signal Processing).
free book A free textbook covering some of the subjects can be found here: http://www.dspguide.com/pdfbook.htm The book is slightly superficial, but it can be valuable

Additional books available in Poland:
R.G. Lyons, Wprowadzenie do cyfrowego przetwarzania sygnałów (WKiŁ 1999) Craig Marven, Gilian Ewers, Zarys cyfrowego przetwarzania sygnałów, WKiŁ 1999 [en: A simple approach to digital signal processing, Wiley \& Sons, 1996]
Tomasz P. Zieliński, Od teorii do cyfrowego przetwarzania sygnałów, WKiŁ 2002 (and next edition with slightly modified title)

You may also buy/borrow a laboratory scriptbook for a Polish language course (Cyfrowe Przetwarzanie Sygnałów, red. A Wojtkiewicz, Wydawnictwa PW) - but our lab is different!

A schedule was here - see the webpage for an updated version!

What Is EDISP All About ;-)

Theory Discrete-time signal processing
Practice Digital signal processing

Application examples:

Filters Guitar effects, radar, software radio, medical devices...
Adaptive filters Echo canceller, noise cancellation (e.g. hands-free microphone in a car),... Discrete Fourier Transform/FFT Signal analyzer, OFDM modulation, Doppler USG, ...

Random signals Voice compression, voice recognition....
2D signals Image processing, USG/tomography image reconstruction, directional receivers, ...

Upsampling/Interpolation CD audio output,

Oversampling CD audio D/A conversion (example)

Please have a look at the black/green-board.

Notice \& remember some things:

- Upsampling
- Filtering (and what happens to the signal spectrum)
- Frequency response (frequency characteristics) of a filter

Signal classification

Continuous or Discrete amplitude and time.

CA-CT \longrightarrow "analog" signals
DA-CT
CA-DT \longrightarrow CCD, SC, SAW devices
DA-DT \longrightarrow digital devices
We'll speak mainly about DT properties; only in some subject DA will be of importance.

CCD device (side remarks)

Electron packet
Charge is transferred on the clock edge (discrete time!).
Clock is usually polyphase (2-4 phases).

SC device (side remarks)

DT signal representations

DT signal $\longleftarrow \longrightarrow$ a number sequence

$$
x[n]=\{x(n)\}
$$

$x[n]$ is a number sequence (or ...)
$x(n)$ is a $n-$ th sample
$\longrightarrow x(n)$ is undefined for $n \notin \mathrm{I}$

- it may come from sampling of analog signal
- but it may also be inherently discrete
- n may correspond to: time, space,

However, the most popular interpretation is: periodic sampling in time.

Periodic sampling

$$
\begin{aligned}
& n \longleftarrow \longrightarrow n \cdot T_{s} \\
& x(n)=x_{a}\left(n T_{s}\right)
\end{aligned}
$$

$$
n=t / T_{s}, \quad T_{s}=0.025[\mathrm{~ms}]
$$

Misinterpretations
\longrightarrow we do not know what is between points
a) $\sin (n \cdot(1 / 5) \cdot \pi)$ or
b) $\sin (n \cdot(2+1 / 5) \cdot \pi) ?$

We have to know which one to choose \longrightarrow sampling theorem

