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Frequency in a DT signal

CD audio system DAT audio system
Sampling: 44100 Hz 48000 Hz

Nyquist: 22050 Hz 24000 Hz
ts 22.676µs 20.833µs

1kHz: samples per period 44.1 48
1kHz: moved from CD to DAT 1kHz 48/44.1=1.0884 kHz

We need a good definition of frequency!



EDISP (L3) 2007 2



EDISP (L3) 2007 3

DT signal frequency concept

Continuous time cosine: Discrete time cosine: Normalized. . .
xa(t) = cosωt ω ∈ R x(n) = cosωnts . . . time: n = t/ts

ω = 2π f x(n) = cos2π f n 1
fs

. . . frequency: fn = f
fs

x(n) = cosθn . . . ang. freq.: θ = 2π
f
fs

T = 1
f = 2π

ω
← period ? → N0 = 1

fn
= 2π

θ

x(t) = x(t + kT ) x(n) = x(n+ kN)
x(n+N) defined only if N ∈ I

Always ← periodic→ only if N0 = N/M (!!)

Normalized angular frequency θ: interval of 2π may be assumed as [0,2π) or [−π,π).

cosn(θ+ k ·2π) = cos(nθ+n · k ·2π) = cosnθ
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Periodicity example
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Transform concept

We want to analyze the signal−→ represent it as “built of” some buliding blocks (well known
signals), possibly scaled

x[n] = ∑
k

Akφk[n]

• The number k of “blocks” φk[n]may be finite, infinite, or even a continuum (then ∑ −→
R

)

• Scaling coefficients Ak are usually real or complex numbers

• φk are complex harmonics e jθkn or cosines or wavelets . . .

• If the representation (expansion) is unique for a class of functions, the set φk[n] is called a
basis for this class.

• The above representation is an “Inverse . . . transform”. The “. . . transform” (the forward
one) is the way to calculate Ak coefficients from the given signal x[n].

• The forward transform is mathematically a cast onto the basis φk, and it is calculated with
inner product, scalar product of a signal with a dual basis φ̃k functions Ak =

〈
x[n], φ̃k[n]

〉
(for an orthogonal transform, φ̃k = φk)

In a Fourier transform, we take the basis representing different frequencies.
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Fourier spectrum of a limited energy signal

∞

∑
n=−∞

|x(n) |2 < ∞ ,

Fourier spectrum definition:

X(e jθ ) =
∞

∑
n=−∞

x(n)e− jnθ

X(e jθ ) – a continuous, periodic function.

x(n) =
1

2π

Z
π

−π

X(e jθ ) e jnθ dθ

−→ inverse transform

Linearity: ax[n]+by[n] F←→ aX(e jθ)+bY (e jθ)

Time shift: x[n−n0]
F←→ e− jn0θX(e jθ),

Frequency shift: e− jnθ0x[n] F←→ X(e j(θ−θ0))

Convolution: x[n]∗ y[n] F←→ X(e jθ) ·Y (e jθ),

Modulation: x[n] · y[n] F←→ 1
2π

R 2π

0 X(e jφ) ·Y (e jθ−φ)dφ

(Parseval’s): E = ∑
∞

n=−∞ |x(n)|2 = 1
2π

R
π

−π
|X(e jθ)|2dθ
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Example

We sample xa(t) with Ts = T/L

xa(t) =
{

1 for 0 ≤ t < T
0 for other t

x[n] =
{

1 for n = 0, 1, . . . , L − 1
0 for other n

Xa(ω) =
R

∞

−∞
xa(t)e− jω t dt X(e jθ ) = ∑

∞

n=−∞ x(n)e− jnθ

Xa(ω) = T sin(ωT /2)
ωT /2 e− jωT/2 X (e jθ ) = e− j (L−1)θ/2 sin(Lθ/2)

sin(θ/2)

(hint:
(

Σ
N−1
n=0 qn = (1 − qN)/(1 − q)

)
)
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Periodic (limited mean power) signal FT

1
N

N−1

∑
n=0
|x(n) |2 < ∞ ,

Fourier spectrum definition:

X(k) =
N−1

∑
n=0

x(n)e− j2πkn/N, −∞ < k < ∞

x(n) =
1
N

N−1

∑
k=0

X(k) e j2πkn/N

−→ inverse transform

We represent x[n] as a sum of N complex discrete harmonics with angular frequencies
θk = 2π

N · k , k = 0, 1, . . . , N − 1
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Example

xp[n] with period N = 10 has L = 5 nonzero samples (n = 0, 1, . . . L − 1)

X(k) =
N−1

∑
n=0

xp(n)e−j 2πkn/N =
L−1

∑
n=0

e−j 2πkn/N = e−j(L−1)πk/N sin(Lπk/N)
sin(πk/N)

, k = 0, 1, . . .

The amplitude spectrum |X [k]| =
∣∣∣ sin(Lθk/2 )

sin(θk/2)

∣∣∣ , θk = 2πk/N is shown
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Discrete Fourier Transform

• A signal x[n] defined for −∞ < n < ∞

• Its spectrum X(e jθ) defined for continuous 0≤ θ < 2π

• Life is short . . .

−→ Let us take a fragment of x[n]: x0[n], n = 0, 1, . . . , N − 1

x0[n] = x[n]g[n], where g[n] =
{

1 for n = 0, 1, . . . , N − 1
0 for others n

g[n] – window (gate?) function (here: a rectangular window) (w[n] we reserve for white noise)

−→We take only N values of θk = 2π

N k, k = 0, 1, . . . , N − 1

X0
(
ejθk
)

=
N−1

∑
n=0

x0(n) e−jnθk =
N−1

∑
n=0

x0 (n)e−j2πnk/N
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Inverse DFT

Let’s take forward DFT definition as a linear equation set, with x0[n] as unknowns. When
we multiply both sides by e j2πrk/N , r = 0, 1, . . . , N − 1 and sum for k = 0, 1, . . . , N − 1

N−1

∑
k=0

X0(k) ej 2πrk/N =
N−1

∑
k=0

[
N−1

∑
n=0

x0(n)e−j2πnk/N

]
e j2πrk/N =

=
N−1

∑
k=0

N−1

∑
n=0

x0(n)e j2πk(r−n)/N =
N−1

∑
n=0

x0(n)
N−1

∑
k=0

e j2πk (r−n)/N

N−1

∑
k=0

e j2πk (r−n)/N =
{

N, r = n
0, r 6= n

⇒
N−1

∑
k=0

X0(k)e j2πr k/N = N x0(r), r = 0, 1, . . . , N − 1

x0(n) =
1
N

N−1

∑
k=0

X0 (k)e j2πnk/N, n = 0, 1, . . . , N − 1



EDISP (L3) 2007 13

DFT properties

Orthogonality – (see next slide)

Periodicity As we sample the spectrum, the reconstructed signal is periodic with period N.
If we compute IDFT for −∞ < n < ∞ . . .

• A non-periodic signal was reconstructed as periodic

• A periodic signal was reconstructed as N-periodic
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DFT as an orthogonal transform

An orthogonal transform (e.g. DFT) is a decomposition of a function (signal) on a set of
orthogonal basis functions φk[n].

x[n] =
1
N

N−1

∑
k=0

A(k) ·φk[n]

Because of φk[n] orthogonality, A(k) are easy to calculate:

A(k) =
N−1

∑
n=0

x(n) ·φ∗k(n)

Basis sequences (transform kernel) have to be orthogonal:

1
N

N−1

∑
k=0

φk(n) ·φ∗m(n) =
{

1 m = k
0 otherwise

Scalar product is zero = orthogonal!

DFT basis functions φk(n) = e−jnθk = e−j2πnk/N are orthogonal – we chose θk so it be!


