Lab 2 – DT signal frequency, Fourier transform

Entry test example questions

- 1. $x_a(t) = \cos(2\pi f_a t)$ was sampled with sampling period T_s . Find normalized frequency, normalized angular frequency θ or period of the sampled signal. (f_a, T_s) or f_s given, their proportion rational or irrational...)
- 2. A signal x(n) with known Fourier spectrum $X(\theta)$ has been {inverted in time decimated modulated ...}. Express mathematically what happened to the spectrum.
- 3. Calculate a DFT of a simple finite signal (by pen and paper...)

Exercises

Italics denote optional tasks.

- 1. Implement $y(n) = a \cdot y(n-1) + x(n)$, accepting a and initial y as parameters. Test impulse response with zero initial condition, initial cond. response, then the combination of both for 0 < a < 1.
- 2. Experiment with different values of a. (1, -1, > 1, < 0 etc.).
- 3. Plot a sinusoid with normalized frequency $f_n = f/f_s$ equal to 0.1, 0.3, 0.5, 0.9, 1.1, 2.1 ($\theta = 2\pi f_n$, $x(n) = \sin(n\theta)$). Note number of samples in period. Explain the plots try to draw the underlying CT signal.
- 4. Use program anator to display real-time signal and its spectrum measure a sinusoid with different relations of f and f_s ($f < f_s/2$, $f \approx f_s/2$, $f > f_s/2$, etc.). Comment the plots. ($f_s \approx 38kHz$)
- 5. Simulate 2 ms of samples of a single square impulse of 1 ms length, sampled with:
 - (a) 1 MHz
 - (b) 10 kHz
 - (c) 10 kHz, but use 4 ms of samples

Plot amplitude of FFT's of all signals on one graph, keeping the real-world frequency axes the same and scaling the 5a signal 100 times down. Find out from the FFT definition why the scaling is necessary (compare different length FFTs of a DC signal).

Think of 5a as "almost CT" signal and comment the spectrum differences.

- 6. Plot an FFT of 1024 points of following signals:
 - (a) a 512 points square impulse
 - (b) other (narrower) square impulses
 - (c) sine wave (integer and non-integer number of periods in window)
 - (d) $e^{jn\theta_c}$ (how many peaks do you see? why?) Try different values of $0 < \theta_c \le \pi$.
 - (e) a 32-point square impulse beginning at 0
 - (f) a 32-point square impulse beginning at $N_0 > 0$

(name the effects, note the number of zero places in spectrum etc.)

- 7. Plot a spectrum of 512 samples of sine wave. Then, zero-pad them to 1024 and 2048 samples. Compare the results. Compute IFFT. (plot real part of IFFT to cut off arithmetic errors). Hint: fft(x,L) automatically zero-pads signal x to length L.
- 8. Compute spectra of different windows. Note mainlobe width, sidelobe attenuation etc.

(If you have enough time, use Matlab: hamming, bartlett, blackman, hanning, kaiser, otherwise use Windows program "anator").

- 9. Do the following experiments to see the effect of windowing:
 - (a) Plot a spectrum of 512 samples of sine wave. Choose the frequency to see the rectangular window effect clearly. If necessary, use zero-padding to see the spectrum better.
 - (b) Use different window shapes, trying to obtain good, clear plot of the spectrum.
 - (c) Demonstrate the signal separation properties of different windows - plot a spectrum of a sum of two sinusoids with similar frequencies and amplitudes, then with very different frequencies and amplitudes.

File: nlab2 LATEXed on October 26, 2009