Homework1 - LTI systems, FT of DT signals

1. Determine whether the system has the following properties: stability, causality, linearity, time-invariance, memorylessness. Present your reasoning!

$$
\begin{gathered}
T(x[n])=a \cdot x[n] \\
T(x[n])=z[n] \cdot x[n], z[n]=(-1)^{n} \\
T(x[n])=x\left[n-n_{0}\right] \\
T(x[n])=a x[n]+b \\
T(x[n])=a x[n]+b x[n-3]
\end{gathered}
$$

2. For the systems from previous item that are LTI, calculate impulse responses and unit responses. Does it make sense to analyze impulse response of a system that is not LTI? (Why?)
3. An LTI system is described by its impulse response $h[n]$. For input $x[n]$ it produces output $y[n]$.

$$
\begin{aligned}
& h[n] \text { is nonzero only for } N_{0} \leq n \leq N_{1} \\
& x[n] \text { is nonzero only for } N_{2} \leq n \leq N_{3} \\
& y[n] \text { is nonzero only for } N_{4} \leq n \leq N_{5}
\end{aligned}
$$

Express N_{4} and N_{5} in terms of $N_{0}, N_{1}, N_{2}, N_{3}$.
4. A DT signal $x[n]$ was created by sampling a 6 kHz sine wave with $10 \mu \mathrm{~s}$ sampling period. Find the normalized frequency, normalized angular frequency, period of $x[n]$.
5. An LTI system has an impulse response $h[n]$. How can you calculate the step response $k[n]$? ($k[n]$ is the response of the system when $u[n]$ is at the input).
6. Let $x[n]$ be a finite length sequence of length N. Let us define two sequences of length $N_{2}=2 N$:

$$
\begin{gathered}
x_{1}(n)=\left\{\begin{array}{cl}
x(n) & 0 \leq n \leq N-1 \\
0 & \text { otherwise }
\end{array}\right. \\
x_{2}(n)=\left\{\begin{array}{cl}
x(n) & 0 \leq n \leq N-1 \\
-x(n-N) & N \leq n \leq 2 N-1
\end{array}\right.
\end{gathered}
$$

X_{1}, X_{2}, X_{3} denote DFT's of respective x 's.

- How to compute $X[k]$ from $X_{1}[k]$?
- How to compute $X_{2}[k]$ from $X_{1}[k]$?

7. Let $x[n]$ be a periodic sequence with period N_{1}. Thus $x[n]$ is also periodic for period $N_{3}=$ $3 N_{1}$. We may compute $X_{1}[k]-N_{1}$-point DFT of $x[n]$ and $X_{3}[k]-N_{3}$-point DFT of $x[n]$.

- express X_{3} in terms of X_{1}
- invent an example with $N_{1}=2$ and calculate X_{1} and X_{3} by hand.

If it seems too hard, try with $N_{2}=2 N_{1}$; when bored, try also $N_{4}=4 N_{1}$; start from guessing pairs of samples which are (almost) identical.
8. For hardcore math crackers only
$x[n]$ - real, finite length sequence.

$$
\begin{gathered}
X\left(e^{j \omega}\right)=\mathcal{F}(x[n]) \\
X[k]=\operatorname{DFT}(x[n]) \\
\Im\{X[k]\}=0
\end{gathered}
$$

Prove or reject: $\Im\left\{X\left(e^{j \omega}\right)\right\}=0$
(notation: \Im denotes imaginary part operator).
Hint: imagine two cases:
(a) $x[n]$ nonzero from 0 to L
(b) $x[n]$ nonzero from $-L / 2$ to $L / 2$ and symmetric around 0

