EDISP (NWL2)
 (English) Digital Signal Processing
 Transform, FT, DFT

October 13, 2011

Transform concept

We want to analyze the signal \longrightarrow represent it as "built of" some buliding blocks (well known signals), possibly scaled

$$
x[n]=\sum_{k} A_{k} \phi_{k}[n]
$$

- The number k of "blocks" $\phi_{k}[n]$ may be finite, infinite, or even a continuum (then $\Sigma \longrightarrow \int$)
- Scaling coefficients A_{k} are usually real or complex numbers
- ϕ_{k} are complex harmonics $e^{j \theta_{k} n}$ or cosines or wavelets ...
- If the representation (expansion) is unique for a class of functions, the set $\phi_{k}[n]$ is called a basis for this class.
- The above representation is an "Inverse ... transform". The ". . transform" (the forward one) is the way to calculate A_{k} coefficients from the given signal $x[n]$.
- The forward transform is mathematically a cast onto the basis ϕ_{k}, and it is calculated with inner product, scalar product of a signal with a dual basis $\tilde{\phi}_{k}$ functions $A_{k}=\left\langle x[n], \tilde{\phi}_{k}[n]\right\rangle$ (for an orthogonal transform, $\tilde{\phi}_{k}=\phi_{k}$)
In a Fourier transform, we take the basis representing different frequencies.

Fourier spectrum of a limited energy signal

$$
\sum_{n=-\infty}^{\infty}|x(n)|^{2}<\infty \quad,\left(x[n] \in \ell^{2}\right) \quad \begin{aligned}
& X\left(e^{j \theta}\right)-\text { a continuous, periodic func- } \\
& \text { tion. }
\end{aligned}
$$

Fourier spectrum definition:

$$
x(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x\left(e^{j \theta}\right) e^{j n \theta} d \theta
$$

$$
x\left(e^{j \theta}\right)=\sum_{n=-\infty}^{\infty} x(n) e^{-j n \theta}
$$

Linearity:

$$
a x[n]+b y[n] \stackrel{\mathcal{F}}{\longleftrightarrow} a X\left(e^{j \theta}\right)+b Y\left(e^{j \theta}\right)
$$

Time shift: $\quad x\left[n-n_{0}\right] \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-j n_{0} \theta} X\left(e^{j \theta}\right)$,
Frequency shift: $e^{-j n \theta_{0}} x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X\left(e^{j\left(\theta-\theta_{0}\right)}\right)$
Convolution: $\quad x[n] * y[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X\left(e^{j \theta}\right) \cdot Y\left(e^{j \theta}\right)$,
Modulation: $\quad x[n] \cdot y[n] \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{2 \pi} \int_{0}^{2 \pi} X\left(e^{j \phi}\right) \cdot Y\left(e^{j \theta-\phi}\right) d \phi$
(Parseval's): $\quad E=\sum_{n=-\infty}^{\infty}|x(n)|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|X\left(e^{j \theta}\right)\right|^{2} d \theta$

Example

We sample $x_{a}(t)$ with $T_{s}=T / L$

$$
\begin{array}{cl}
x_{a}(t)=\left\{\begin{array}{ccc}
1 & \text { for } 0 \leq t<T \\
0 & \text { for } & \text { other } t
\end{array}\right. & x[n]=\left\{\begin{array}{cc}
1 & \text { for } n=0,1, \ldots, L-1 \\
0 & \text { for } \\
\text { other } n
\end{array}\right. \\
X_{a}(\omega)=\int_{-\infty}^{\infty} x_{a}(t) e^{-j \omega t} d t & x\left(e^{j \theta}\right)=\sum_{n=-\infty}^{\infty} x(n) e^{-j n \theta}
\end{array} \quad \begin{array}{ll}
X_{a}(\omega)=T \frac{\sin (\omega T / 2)}{\omega T / 2} e^{-j \omega T / 2} & x\left(e^{j \theta}\right)=e^{-j(L-1) \theta / 2} \frac{\sin (L \theta / 2)}{\sin (\theta / 2)} \\
& \text { (hint: } \left.\left(\sum_{n=0}^{N-1} q^{n}=\left(1-q^{N}\right) /(1-q)\right)\right)
\end{array}
$$

Periodic (limited mean power) signal FT

The signal is periodic with period $\mathrm{N} \longrightarrow$ no component that is nonperiodic or periodic with different period.
Conclusion: only N -periodic components (this includes N / k : $\mathrm{N} / 2, \mathrm{~N} / 3$, etc.) $\longrightarrow e^{j 2 \pi n k / N}$

$$
\frac{1}{N} \sum_{n=0}^{N-1}|x(n)|^{2}<\infty
$$

Fourier spectrum definition:

$$
x(n)=\frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j 2 \pi k n / N}
$$

$X(k)=\sum_{n=0}^{N-1} x(n) e^{-j 2 \pi k n / N}, \quad-\infty<k<\infty \quad \longrightarrow$ inverse transform
We represent $x[n]$ as a sum of N complex discrete harmonics with angular frequencies $\theta_{k}=\frac{2 \pi}{N} \cdot k, \quad k=0,1, \ldots, N-1$

8 basis functions for $\mathrm{N}=8$ (real part only)

$\mathrm{k}=0 . .7$ basis functions for $\mathrm{N}=8$ (and the eight = zeroth)

Example

$x_{p}[n]$ with period $N=10$ has $L=5$ nonzero samples
($n=0,1, \ldots L-1$)
$X(k)=\sum_{n=0}^{N-1} x_{p}(n) \mathrm{e}^{-\mathrm{j} 2 \pi k n / N}=\sum_{n=0}^{L-1} \mathrm{e}^{-\mathrm{j} 2 \pi k n / N}=\mathrm{e}^{-\mathrm{j}(L-1) \pi k / N} \frac{\sin (L \pi k / N)}{\sin (\pi k / N)}$,
The amplitude spectrum $|X[k]|=\left|\frac{\sin \left(L \theta_{k / 2}\right)}{\sin \left(\theta_{k} / 2\right)}\right|, \quad \theta_{k}=2 \pi k / N$ is shown

b)

Discrete Fourier Transform

- A signal $x[n]$ defined for $-\infty<n<\infty$
- Its spectrum $X\left(e^{j \theta}\right)$ defined for continuous $0 \leq \theta<2 \pi$
- Life is short...
\longrightarrow Let us take a fragment of $x[n]: x_{0}[n], n=0,1, \ldots, N-1$

$$
x_{0}[n]=x[n] g[n], \text { where } g[n]=\left\{\begin{array}{ccc}
1 & \text { for } & n=0,1, \ldots, N-1 \\
0 & \text { for } & \text { others } n
\end{array}\right.
$$

$g[n]$ - window (gate?) function (here: a rectangular window) ($w[n]$ we reserve for white noise)
\longrightarrow We take only N values of $\theta_{k}=\frac{2 \pi}{N} k, \quad k=0,1, \ldots, N-1$

$$
x_{0}\left(\mathrm{e}^{\mathrm{j} \theta_{k}}\right)=\sum_{n=0}^{N-1} x_{0}(n) \mathrm{e}^{-\mathrm{j} n \theta_{k}}=\sum_{n=0}^{N-1} x_{0}(n) \mathrm{e}^{-\mathrm{j} 2 \pi n k / N}
$$

DFT properties

Orthogonality - (see next slide)
Periodicity As we sample the spectrum, the reconstructed signal is periodic with period N. If we compute IDFT for $-\infty<n<\infty \ldots$

- A non-periodic signal was reconstructed as periodic
- A periodic signal was reconstructed as N-periodic

b)

DFT as an orthogonal transform

An orthogonal transform (e.g. DFT) is a decomposition of a function (signal) on a set of orthogonal basis functions $\phi_{k}[n]$.

$$
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} A(k) \cdot \phi_{k}[n]
$$

Because of $\phi_{k}[n]$ orthogonality, $A(k)$ are easy to calculate:

$$
A(k)=\sum_{n=0}^{N-1} x(n) \cdot \phi_{k}^{*}(n)
$$

Basis sequences (transform kernel) have to be orthogonal:
$\bar{N} \sum_{k=0}^{N-1} \phi_{k}(n) \cdot \phi_{m}^{*}(n)=\left\{\begin{array}{ll}1 & m=k \\ 0 & \text { otherwise }\end{array}\right.$ Scalar product is zero =orthogonal!
DFT basis functions $\phi_{k}(n)=\mathrm{e}^{-\mathrm{j} n \theta_{k}}=\mathrm{e}^{-\mathrm{j} 2 \pi n k / N}$ are orthogonal - we chose θ_{k} so it be!

Inverse DFT

Let's take forward DFT definition as a linear equation set, with $x_{0}[n]$ as unknowns. When we multiply both sides by $\mathrm{e}^{\mathrm{j} 2 \pi r k / N}, r=0,1, \ldots, N-1$ and sum for $k=0,1, \ldots, N-1$

$$
\begin{gathered}
\sum_{k=0}^{N-1} x_{0}(k) \mathrm{e}^{\mathrm{j} 2 \pi r k / N}=\sum_{k=0}^{N-1}\left[\sum_{n=0}^{N-1} x_{0}(n) \mathrm{e}^{-\mathrm{j} 2 \pi n k / N}\right] \mathrm{e}^{\mathrm{j} 2 \pi r k / N}= \\
=\sum_{k=0}^{N-1} \sum_{n=0}^{N-1} x_{0}(n) \mathrm{e}^{\mathrm{j} 2 \pi k(r-n) / N}=\sum_{n=0}^{N-1} x_{0}(n) \sum_{k=0}^{N-1} \mathrm{e}^{\mathrm{j} 2 \pi k(r-n) / N} \\
\sum_{k=0}^{N-1} \mathrm{e}^{\mathrm{j} 2 \pi k(r-n) / N}=\left\{\begin{array}{rr}
N, & r=n \\
0, & r \neq n
\end{array} \Rightarrow \sum_{k=0}^{N-1} x_{0}(k) \mathrm{e}^{\mathrm{j} 2 \pi r k / N}=N x_{0}(r), \quad r=0,1\right. \\
x_{0}(n)=\frac{1}{N} \sum_{k=0}^{N-1} x_{0}(k) \mathrm{e}^{\mathrm{j} 2 \pi n k / N}, \quad n=0,1, \ldots, N-1
\end{gathered}
$$

Forward and Inverse DFT - transformation matrix

$$
\begin{array}{rr}
\mathcal{F}(x)= & F \cdot x \\
F^{-1} \cdot \mathcal{F}(x)=F^{-1} \cdot F \cdot x \\
F^{-1} \cdot \mathcal{F}(x)= & x
\end{array}
$$

algebraic trivia:
How to construct F matrix? $F_{k n}=e^{-j 2 \pi n k / N}$
What is F^{-1} ? (not-so-trivial, but see IDFT slide)
Note nice properties of F matrix...

