November 4, 2011
Lab 2 - Fourier transform, DFT, FFT

Entry test example questions

1. $x_{a}(t)=\cos \left(2 \pi f_{a} t\right)$ was sampled with sampling period T_{s}. Plot the $\{$ spectrum \mid N-point DFT $\}$ of $x[n]\left(f_{a}, T_{s}\right.$ or f_{s} given, N given - whole number of periods or not)
2. A signal $x(n)$ with known Fourier spectrum $X(\theta)$ has been \{inverted in time \mid decimated \mid modulated $\mid \ldots\}$. Express mathematically what happened to the spectrum.
3. Calculate a DFT of a simple finite signal (by pen and paper...)

Exercises

Italics denote optional tasks.

1. Simulate 2 ms of samples of a single square impulse of 1 ms length, sampled with:
(a) 1 MHz
(b) 10 kHz
(c) 10 kHz , but use 4 ms of samples

Remark: first, calculate by pencil and imagine (or even sketch) the signal, then produce it using ones(), zeros(), and [] operators in Matlab. Calculate (with Matlab) and plot amplitude of FFT's of all signals on one graph, keeping the real-world frequency axes the same and scaling the 1a signal 100 times down. Find out from the FFT definition why the scaling is necessary (compare different length FFTs of a DC signal).

Think of 1a as "almost CT" signal and comment the spectrum differences.
2. Plot an FFT of 1024 points of following signals:
(a) a 512 points square impulse
(b) other (narrower) square impulses
(c) sine wave (integer and non-integer number of periods in window)
(d) $e^{j n \theta_{c}}$ (how many peaks do you see? why?) Try different values of $0<\theta_{c} \leq \pi$.
(e) a 32-point square impulse beginning at 0
(f) a 32-point square impulse beginning at $N_{0}>0$
(name the effects, note the number of zero places in spectrum etc.)
3. Plot a spectrum of 512 samples of sine wave. Then, zero-pad them to 1024 and 2048 samples. Compare the results. Compute IFFT. (plot real part of IFFT to cut off arithmetic errors). Hint: $\mathrm{fft}(\mathrm{x}, \mathrm{L})$ automatically zero-pads signal x to length L .
4. Capture 1024 samples of a real signal from a generator. Choose some signal (sin, rectangular,...) and set the f and f_{s} using your own wisdom. Plot, labeling properly the horizontal axis:
(a) the signal
(b) its 1024-point FFT
(c) its 2^{12} or even ${ }^{14}$-point FFT (with zero-padding)

Save the signal in some variable.
5. Compute spectra of different windows. Note mainlobe width, sidelobe attenuation etc.
(If you have enough time, use Matlab: hamming, bartlett, blackman, hanning, kaiser, otherwise use Windows program "anator").
6. Do the following experiments to see the effect of windowing:
(a) Plot a spectrum of 512 samples of sine wave. Choose the frequency to see the rectangular window effect clearly. If necessary, use zero-padding to see the spectrum better.
(b) Use different window shapes, trying to obtain good, clear plot of the spectrum.
(c) Demonstrate the signal separation properties of different windows - plot a spectrum of a sum of two sinusoids with similar frequencies and amplitudes, then with very different frequencies and amplitudes.
7. Repeat FFT plots from Ex. 4, using a window (e.g. Hamming) on the signal.

File: nwlab2 $\mathrm{A}_{\mathrm{E}} \mathrm{EX}$ Xed on November 4, 2011

