EDISP (Filters 2)
 (English) Digital Signal Processing Digital (Discrete Time) filters 2 lecture

January 30, 2011

How an LTI system filters signals

- A practical system and its difference equation
- Difference equation and $H(z)$
- Short path: system $\longrightarrow H(z)$
- System defined by $H(z)$ + harmonic signal
- Is my filter stable?

System and its difference equation

Difference equation and $H(z)$

z^{-1} - shift operator

$$
\begin{gathered}
\sum_{m=0}^{2} a_{m} y(n-m)=\sum_{k=0}^{2} b_{k} x(n-k) \\
\sum_{m=0}^{2} a_{m} Y(z) z^{-m}=\sum_{k=0}^{2} b_{k} X(z) z^{-k} \\
Y(z) \sum_{m=0}^{2} a_{m} z^{-m}=X(z) \sum_{k=0}^{2} b_{k} z^{-k} \\
H(z)=\frac{Y(z)}{X(z)}=\frac{\sum_{k=0}^{2} b_{k} z^{-k}}{\sum_{m=0}^{2} a_{m} z^{-m}}
\end{gathered}
$$

System and its $H(z)$

$$
Y(z)=X(z)+b_{1} X(z) z^{-1}+b_{2} X(z) z^{-2}-a_{1} Y(z) z^{-1}
$$

$$
Y(z)+a_{1} Y(z) z^{-1}+a_{2} Y(z) z^{-2}=X(z)+b_{1} X(z) z^{-1}+b_{2} X(z) z^{-2}
$$

$$
\begin{gathered}
\sum_{m=0}^{2} a_{m} Y(z) z^{-m}=\sum_{k=0}^{2} b_{k} X(z) z^{-k} \\
H(z)=\frac{Y(z)}{X(z)}=\frac{\sum_{k=0}^{2} b_{k} z^{-k}}{\sum_{m=0}^{2} a_{m} z^{-m}}
\end{gathered}
$$

$H(z)$ to $h(n)$ (or how to find Z^{-1})

$$
\begin{aligned}
H(z)=\frac{Y(z)}{X(z)}=\frac{\sum_{k=0}^{2} b_{k} z-k}{\sum_{m=0}^{2} a_{m} z^{-m}}= & \\
& =A \frac{\prod_{k=0}^{2}\left(1-c_{k} z^{-1}\right)}{\prod_{m=0}^{2} a_{m} z^{-m}\left(1-d_{m} z^{-1}\right)}
\end{aligned}
$$

Zeros at $z=c_{k} \longrightarrow\left(1-c_{k} z^{-1}\right)=\frac{z-c_{k}}{z-0}$ (plus pole at $\left.z=0\right)$. Poles at $z=d_{m} \longrightarrow \frac{1}{\left(1-d_{m} z^{-1}\right)}=\frac{z-0}{z-d_{m}}$ (plus a zero at $z=0$).

System defined by $H(z)+$ harmonic signal

$$
\begin{aligned}
x(n) & =e^{j n \theta} \longrightarrow h(n) \longrightarrow y(n)=? \\
y(n) & =\sum_{k} h(k) \cdot e^{j(n-k) \theta}= \\
& =\sum_{k} h(k) \cdot e^{j(-k) \theta} \cdot e^{j n \theta}= \\
& =e^{j n \theta} \sum_{k} h(k) \cdot e^{j(-k) \theta}= \\
& =e^{j n \theta} H(\theta) \\
& H(\theta)=A(\theta) e^{j \phi(\theta)}
\end{aligned}
$$

If $x(n)$ is periodic - we can decompose it into harmonics (linearity).

System defined by $H(z)+$ sine/cosine signal

$$
x(n)=e^{j n \theta} \longrightarrow \mathrm{~h}(\mathrm{n}) \longrightarrow y(n)=e^{j n \theta} H(\theta)
$$

so if $x(n)=\cos (n \theta)=1 / 2 \cdot\left(e^{j n \theta}+e^{-j n \theta}\right)$
then $y(n)=1 / 2 \cdot\left(e^{j n \theta}+e^{-j n \theta}\right) \cdot H(\theta)$
$H(\theta)=A(\theta) e^{j \phi(\theta)}$
and $y(n)=A(\theta) \cdot 1 / 2 \cdot\left(e^{j n \theta}+e^{-j n \theta}\right) \cdot e^{j \phi(\theta)}$
(for a real $h(n) \phi(\theta)$ is odd: $\phi(-\theta)=-\phi(\theta)$)
and $y(n)=A(\theta) \cdot 1 / 2 \cdot\left(e^{j(n \theta+\phi(\theta))}+e^{-j(n \theta+\phi(\theta))}\right)$
$y(n)=A(\theta) \cdot \cos (n \theta+\phi(\theta))$

Repeat the same with $\sin () \longrightarrow$ at home.
E.g. $x(n)=3+5 \sin (0.1 \pi n) \longrightarrow$ a DC component and a 0.1π harmonic signal. So $y(n)=A(0) \cdot 3+A(0.1 \pi) \cdot 5 \sin (0.1 \pi n+\phi(0.1 \pi))$.
Note: Z-transform is NOT a good tool to calculate this!!

Filter stability

We may check stability:

- from impulse response $\sum_{k=-\infty}^{\infty}|h(k)|<\infty$
- at first glance: FIR is always stable (see above)
- from $H(z)$: a pole d_{k} produces a term

$$
\frac{A_{k}}{1-d_{k} z^{-1}}, \quad A_{k}=\left.\left(1-d_{k} z^{-1}\right) \cdot X(z)\right|_{z=d_{k}}
$$

in the partial fraction expansion of $H(z)$;
$\frac{1}{1-d_{k} z^{-1}}$ is a Z transform of $d_{k}^{n} u(n)$,
which is a stable term in $h(n)$ if $\left|d_{k}\right|<1$.
\longrightarrow all poles must be inside unit circle $|z|=1$ (for a stable causal system)
outside for an anticausal one

- by time-domain analysis by hand (recommended only as last resort)

Filter design in practice

- FIR - window method (LP example, BP/HP howto)
- FIR - optimization methods (Parks-McClellan, called also Remez)
- IIR - bilinear transformation
- IIR - impulse/step response invariance (next lecture)
- IIR - optimization methods (next lecture)

FIR LP filter by window method

LP filter - pass from $-\theta_{p}$ to $+\theta_{p}$
$h_{0}(n)=\frac{1}{2 \pi} \int_{-\theta_{p}}^{\theta_{p}} e^{j n \theta} d \theta=\frac{\theta_{p}}{\pi} \frac{\sin n \theta}{n \theta_{p}}$

Cut at order 120. Shift to be causal.

Gibbs effect

FIR - optimization methods

Window method - simple, easy, all under strict control. But is it "best" filter for given order?
yes a rectangular window gives best approximation in the MS sense
no we know about problems (Gibbs effect) at the discontinuities so we try to cheat with Windows
So, Parks \& Mc Clellan (1972) used Chebyshev (minimax) approximation on discrete set of points in θ. They applied E. Ya. Remez (1934) algorithm.

Approx 12 iterations needed.

IIR - bilinear transformation

We use analog filter prototype:

- good theory
- prototype polynomials \longrightarrow known properties
- tables, methods
"Copy" a CT prototype $H(s)$ to DT domain $H(z)$:
$\downarrow \longrightarrow$ substitute $s=\frac{2}{T_{d}} \frac{1-z^{-1}}{1+z^{-1}}$ (trapezoidal inetgration of $H(s)$ with step T_{d}
- roll the $j \omega$ line to $e^{j \omega}$ circle
- A point θ is mapped from $\omega=\frac{2}{T_{d}} \tan (\theta / 2)$
- \longrightarrow we need to pre-warp our frequency characteristics from θ to ω
- Stability \longrightarrow left half-plane transformed into inside of unit circle (OK!)

IIR - bilinear transformation - analog prototypes

Butterworth (max. flat amplitude)

Chebyshev type II
Bessel - maximally flat phase

Chebyshev type I

Cauer (elliptical)

IIR - bilinear transformation - Matlab

- Filtering: $y=$ filter (B, A, x) ;
B - numerator coefficients
A - denominator coefficients (if FIR $\longrightarrow A=[1]$)
x - input samples vector
- Filter characteristics: [h, w]=freqz (B, A) ;
w frequency values,
abs (h) amplitude characteristics
- Filter design specification: frequency from $0.0(\longrightarrow$ zero $)$ to $1.0(\longrightarrow$ $\left.f_{s} / 2\right)$
- Window method (FIR): B = FIR2 (N, F, A[, window]);

N order
F frequency points
A amplitude characteristics at points specified by F
window e.g. Bartlett($\mathrm{N}+1$) or chebwin($\mathrm{N}+1, \mathrm{R}$)

- IIR bilinear method (Butterworth as example):
[N, wn]=buttord (Wp, Ws, Rp, Rs);
Wp, Ws passband freq, stopband freq,
Rp, Rs ripple in passband, ripple in stopband
N , wn order and 3dB point warped and adjusted
[B, A] =butter (N, wn) ;
does the polynomial design and bilinear transform.

