# EDISP (English) Digital Signal Processing

Jacek Misiurewicz *e-mail: jmisiure@elka.pw.edu.pl* Institute of Electronic Systems Warsaw University of Technology Warsaw, Poland

October 29, 2013

### **General information**

| Lectures                                            | 2h/week, Tue, 14:15-16                                                                                                                                             |   |     |                                       |  |  |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|---------------------------------------|--|--|
| Labs                                                | pprox4h/2weeks: Monday 8:15-12, room 022. See the schedule.                                                                                                        |   |     |                                       |  |  |
|                                                     | First meeting for all students – Monday Oct, 9:15                                                                                                                  |   |     |                                       |  |  |
|                                                     | Labs start with an "entry test"!!!                                                                                                                                 |   |     |                                       |  |  |
| Contact                                             | J. Misiurewicz, (jmisiure@elka.pw.edu.pl) room 447.                                                                                                                |   |     |                                       |  |  |
| Web page                                            | http://staff.elka.pw.edu.pl/~jmisiure/                                                                                                                             |   |     |                                       |  |  |
|                                                     | $\longrightarrow$ Slides on Monday evening! (usually ;-) )                                                                                                         |   |     |                                       |  |  |
| Homeworks Announced as a preparation for the tests. |                                                                                                                                                                    |   |     |                                       |  |  |
| Exams                                               | Two short tests within lecture hours (see the lab schedule) and a final exam during                                                                                |   |     |                                       |  |  |
|                                                     | the winter exam session (TBA).                                                                                                                                     |   |     |                                       |  |  |
|                                                     | 2x10%                                                                                                                                                              | = | 20% | tests                                 |  |  |
| Scoring:                                            | 6x5%                                                                                                                                                               | = | 30% | lab + entry test (lab 0 – not scored) |  |  |
|                                                     |                                                                                                                                                                    |   |     | final exam                            |  |  |
|                                                     | 2x2%                                                                                                                                                               | = | 4%  | extra for homeworks (maybe even more) |  |  |
| Short path                                          | <b>rt path</b> if $[(score \ge 41)\&\&(tests \ge 15)\&\&(test2 \ge 5)]$ ; then $score* = 2$ ; fi<br>"if" conditions are evaluated once, before re-doing tests etc. |   |     |                                       |  |  |
|                                                     |                                                                                                                                                                    |   |     |                                       |  |  |

#### Books

base book The course is based on selected chapters of the book:

- A. V. Oppenheim, R. W. Schafer, *Discrete-Time Signal Processing*, Prentice-Hall 1989 (or II ed, 1999; also previous editions: *Digital Signal Processing*).
- free book A free textbook covering some of the subjects can be found here: http://www.dspguide.com/pdfbook.htm The book is slightly superficial, but nice
- **good book** Edmund Lai, *Practical Digital Signal Processing for Engineers and Technicians*, Newnes (Elsevier), 2003
- **exercise book** Vinay K. Ingle, John G. Proakis, *Digital Signal Processing using MATLAB*, Thomson 2007;*Helps understand Matlab usage in the lab (but is NOT a lab base for us)*

Additional books available in Poland:

R.G. Lyons, Wprowadzenie do cyfrowego przetwarzania sygnałów (WKiŁ 1999) Craig Marven, Gilian Ewers, Zarys cyfrowego przetwarzania sygnałów, WKiŁ 1999 [en: A simple approach to digital signal processing, Wiley & Sons, 1996] Tomasz P. Zieliński, Od teorii do cyfrowego przetwarzania sygnałów, WKiŁ 2002

You may also buy/borrow a laboratory scriptbook for a Polish language course (Cyfrowe Przetwarzanie Sygnałów, red. A Wojtkiewicz, Wydawnictwa PW) – but our lab is different!

A schedule was here - see the webpage for an updated version!

#### What Is EDISP All About ;-)

**Theory** Discrete-time signal processing **Practice** Digital signal processing

Application examples:

Filters Guitar effects, radar, software radio, medical devices...

Adaptive filters Echo canceller, noise cancellation (e.g. hands-free microphone in a car),...

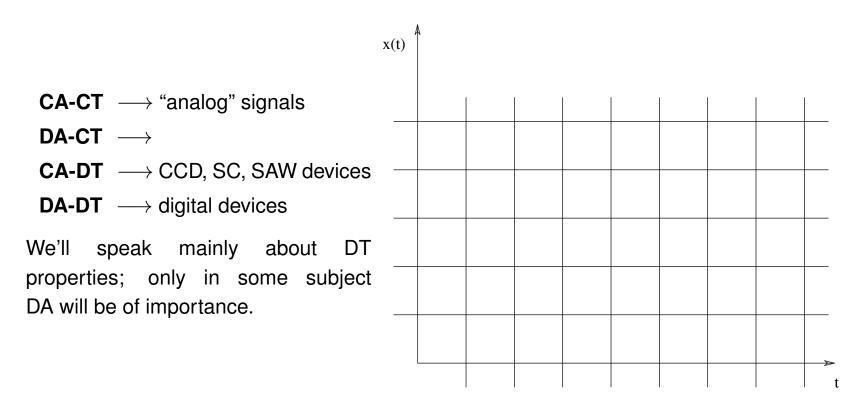
**Discrete Fourier Transform/FFT** Signal analyzer, OFDM modulation, Doppler USG, ...

**Random signals** Voice compression, voice recognition....

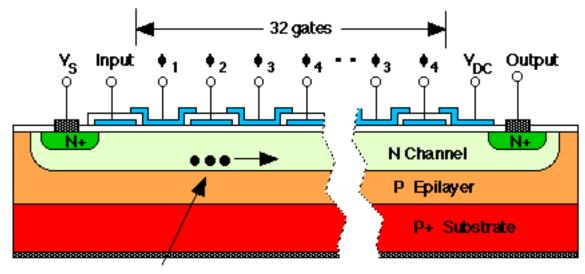
**2D signals** Image processing, USG/tomography image reconstruction, directional receivers, ...

Upsampling/Interpolation CD audio output, ....

#### **Oversampling CD audio D/A conversion (example)**


Please have a look at the black/green-board.

Notice & remember some things:

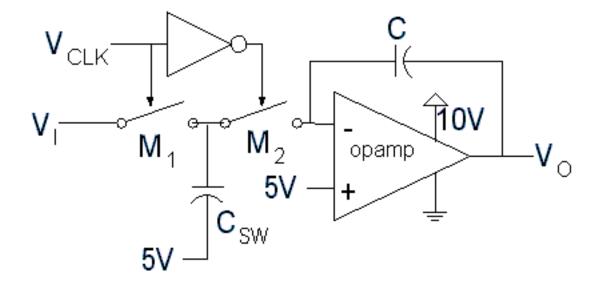

- Upsampling
- Filtering (and what happens to the signal spectrum)
- Frequency response (frequency characteristics) of a filter

#### **Signal classification**

Continuous or Discrete **amplitude** and **time**.



#### CCD device (side remarks)



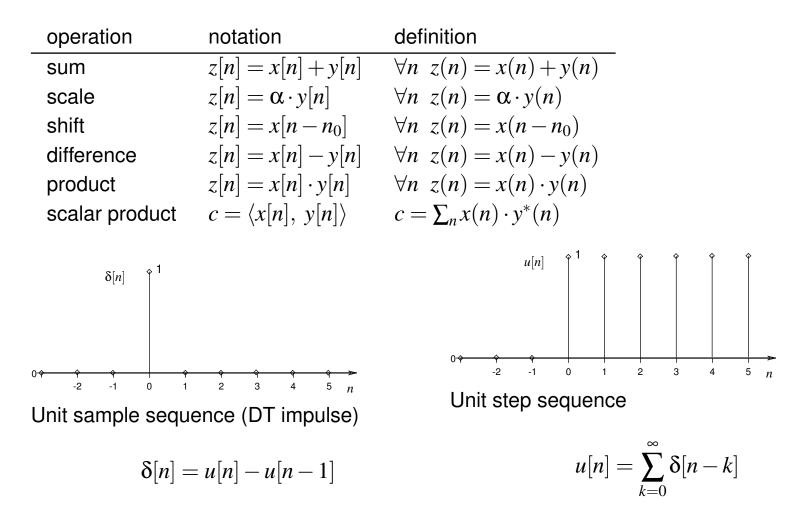

Electronpacket

Charge is transferred on the clock edge (discrete time!).

Clock is usually polyphase (2-4 phases).

# SC device (side remarks)




#### **DT** signal representations

DT signal  $\longleftrightarrow \rightarrow$  a number sequence



However, the most popular interpretation is: periodic sampling in time.

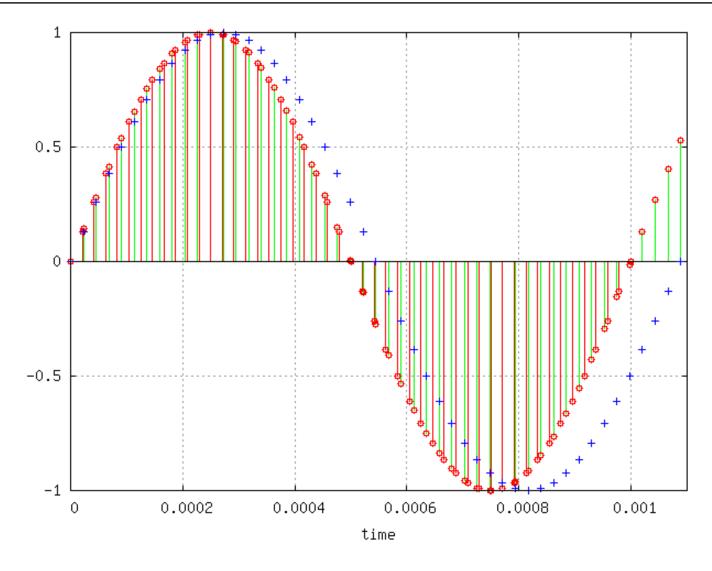
#### Number sequence (or DT signal) operations; basic sequences



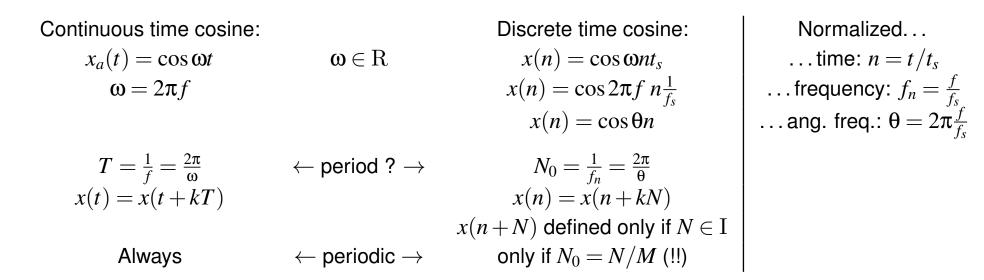
#### **Periodic sampling** t [ms] п $n \leftarrow m \cdot T_s$ $n = t/T_s, T_s = 0.025 \text{ [ms]}$ $x(n) = x_a(nT_s)$ $1 \overset{x(n)}{\uparrow} \overset{x(n)}{\land}$ **Misinterpretations** 0.5- $\rightarrow$ we do not know what is between points 0-2 3 8 п a) $sin(n \cdot (1/5) \cdot \pi)$ or -0.5b) $sin(n \cdot (2+1/5) \cdot \pi)$ ? -1-

We have to know which one to choose  $\longrightarrow$  sampling theorem

#### Sampling rates in audio processing


http://en.wikipedia.org/wiki/Sampling\_rate
In digital audio, common sampling rates are:

- 8,000 Hz telephone, adequate for human speech
- 22,050 Hz radio
- 32,000 Hz miniDV digital video camcorder, DAT (LP mode)
- 44,100 Hz audio CD, also most commonly used with MPEG-1 audio (VCD, SVCD, MP3) compatible with PAL (625 line) and NTSC (528 line) dot frequency
- 48,000 Hz digital sound used for miniDV, digital TV, DVD, DAT, films and professional audio
- 96,000 or 192,000 Hz DVD-Audio, some LPCM DVD tracks, BD-ROM (Blu-ray Disc) audio tracks, and HD-DVD (High-Definition DVD) audio tracks
- 2.8224 MHz SACD, 1-bit sigma-delta modulation process known as Direct Stream Digital, (Sony and Philips)


# Frequency in a DT signal

|                            | CD audio system | DAT audio system   |
|----------------------------|-----------------|--------------------|
| Sampling:                  | 44100 Hz        | 48000 Hz           |
| Nyquist:                   | 22050 Hz        | 24000 Hz           |
| $t_s$                      | 22.676µs        | 20.833 <i>µ</i> s  |
| 1kHz: samples per period   | 44.1            | 48                 |
| 1kHz: moved from CD to DAT | 1kHz            | 48/44.1=1.0884 kHz |

We need a good definition of frequency!

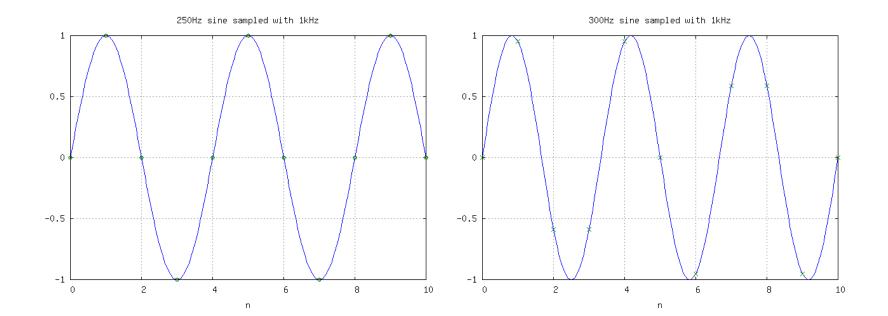


#### **DT signal frequency concept**



Normalized angular frequency  $\theta$ : interval of  $2\pi$  may be assumed as  $[0, 2\pi)$  or  $[-\pi, \pi)$ .

 $\cos n(\theta + k \cdot 2\pi) = \cos(n\theta + n \cdot k \cdot 2\pi) = \cos n\theta$ 


### Normalized frequency example

$$x_a(t) = \cos\omega t \text{ with } \omega = 1000 \cdot 2 \cdot \pi \text{ (1kHz)}$$
  
Let us sample it with  $f_s = 48 \text{ kHz}$   
 $x(n) = x_a(nT_s) = x_a(n/f_s) = \cos(1000 \cdot 2\pi \cdot n/48000) = \cos(\frac{2\pi}{48}n)$   
or  
 $x_a(t) = \cos\omega t \text{ with } \omega = 2000 \cdot 2 \cdot \pi \text{ (2kHz)}$   
Sampled with  $f_s = 96 \text{ kHz}$   
 $x(n) = x_a(nT_s) = x_a(n/f_s) = \cos(2000 \cdot 2\pi \cdot n/96000) = \cos(\frac{2\pi}{48}n)$ 

- $\rightarrow$  signals identical after sampling
  - Extract important parameter:  $\theta = \frac{2\pi}{48}$
  - ... and we may write it down as  $x(n) = cos(\theta n)$

 $\longrightarrow$  Normalized (angular) frequency  $(2\pi) \cdot \frac{f}{f_s}$  determines the properties of the sampled signal, and now it is not important what was the frequency of  $x_a$  (only how it was related to  $f_s$ ).

# Periodicity example

