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Transform concept
We want to analyze the signal −→ represent it as “built of” some buliding
blocks (well known signals), possibly scaled

x[n] = ∑
k

Ak φk [n]

I The number k of “blocks” φk [n]may be finite, infinite, or even a
continuum (then ∑ −→

∫
)

I Scaling coefficients Ak are usually real or complex numbers
I φk are complex harmonics ejθk n or cosines or wavelets . . .
I If the representation (expansion) is unique for a class of functions, the

set φk [n] is called a basis for this class.
I The above representation is an “Inverse . . . transform”. The

“. . . transform” (the forward one) is the way to calculate Ak coefficients
from the given signal x[n].

I The forward transform is mathematically a cast onto the basis φk , and it
is calculated with inner product, scalar product of a signal with a dual
basis φ̃k functions Ak =

〈
x[n], φ̃k [n]

〉
(for an orthogonal transform,

φ̃k = φk )
In a Fourier transform, we take the basis representing different frequencies.



Fourier spectrum of a limited energy signal

∞

∑
n=−∞

|x(n) |2 < ∞ ,(x[n] ∈ `2)

Fourier spectrum definition:

X(ejθ ) =
∞

∑
n=−∞

x(n)e−jnθ

X(ejθ ) – a continuous, periodic func-
tion.

x(n) =
1

2π

∫
π

−π

X(ejθ ) ejnθ dθ

−→ inverse transform

Linearity: ax[n] + by [n]
F←→ aX(ejθ) + bY (ejθ)

Time shift: x[n−n0]
F←→ e−jn0θX(ejθ),

Frequency shift: e−jnθ0x[n]
F←→ X(ej(θ−θ0))

Convolution: x[n]∗ y [n]
F←→ X(ejθ) ·Y (ejθ),

Modulation: x[n] · y [n]
F←→ 1

2π

∫ 2π

0 X(ejφ) ·Y (ejθ−φ)dφ

(Parseval’s): E = ∑
∞
n=−∞ |x(n)|2 = 1

2π

∫
π

−π
|X(ejθ)|2dθ



A simple example

A very long piece of sinusoid: sin(θx n) for n ∈ 0, 1, . . . , N−1 (or
1/2je+jnθx −1/2je−jnθx )
Scalar product of 1/2je+jnθx with e−jnθ

I when θ = θx : ∑
N−1
n=0 1/2je0 = jN/2

I when θ 6= θx : ∑
N−1
n=0 1/2jejnθx−θ = . . . jN/2 times mean value of a

complex sine −→ almost zero

Similar for −θx , and we get two strong components in spectrum at ±θx (plus
“almost zero” around – for thorough analysis see next slide)



A full-fledged example
We sample xa(t) with Ts = T/L

xa(t) =

{
1 for 0 ≤ t < T
0 for other t

x[n] =

{
1 for n = 0, 1, . . . , L − 1
0 for other n

Xa(ω) =
∫

∞

−∞
xa (t)e−jω t dt X(ejθ ) = ∑

∞
n=−∞ x(n)e−jnθ

Xa(ω) = T sin(ωT /2)
ωT /2 e−jωT/2 X (ejθ ) = e−j (L−1)θ/2 sin(Lθ/2)

sin(θ/2)

(hint:
(

ΣN−1
n=0 qn = (1 − qN)/(1 − q)

)
)

At home: Repeat calculations for xa = cos(ωt); select ω such that an
integer number of periods fits in T .



Periodic (limited mean power) signal FT

The signal is periodic with period N −→ no component that is nonperiodic or
periodic with different period.
Conclusion: only N-periodic components (this includes N/k: N/2, N/3,
etc.)−→ ej2πnk/N

1
N

N−1

∑
n=0
|x(n) |2 < ∞ ,

Fourier spectrum definition:

X(k) =
N−1

∑
n=0

x(n)e−j2πkn/N , −∞ < k < ∞

x(n) =
1
N

N−1

∑
k=0

X(k) ej2πkn/N

−→ inverse transform

We represent x[n] as a sum of N complex discrete harmonics with angular
frequencies θk = 2π

N · k , k = 0, 1, . . . , N − 1



8 basis functions for N=8 (real part only)



Example

xp[n] with period N = 10 has L = 5 nonzero samples
(n = 0, 1, . . . L − 1)

X(k) =
N−1

∑
n=0

xp(n)e−j 2πkn/N =
L−1

∑
n=0

e−j 2πkn/N = e−j(L−1)πk /N sin(Lπk /N)

sin(πk /N)
, k = 0, 1, . . .

The amplitude spectrum |X [k ]| =
∣∣∣ sin(Lθk /2 )

sin(θk /2)

∣∣∣ , θk = 2πk /N is shown



Discrete Fourier Transform

I A signal x[n] defined for −∞ < n < ∞

I Its spectrum X(ejθ) defined for continuous 0≤ θ < 2π

I Life is short . . .

−→ Let us take a fragment of x[n]: x0[n], n = 0, 1, . . . , N − 1

x0[n] = x[n]g[n], where g[n] =

{
1 for n = 0, 1, . . . , N − 1
0 for others n

g[n] – window (gate?) function (here: a rectangular window) (w[n] we reserve
for white noise)
−→We take only N values of θk = 2π

N k , k = 0, 1, . . . , N − 1

X0

(
ejθk
)

=
N−1

∑
n=0

x0(n) e−jnθk =
N−1

∑
n=0

x0 (n)e−j2πn k /N



DFT properties

Orthogonality – (see next slide)
Periodicity As we sample the spectrum, the reconstructed signal is periodic
with period N. If we compute IDFT for −∞ < n < ∞ . . .

I A non-periodic signal was reconstructed as periodic
I A periodic signal was reconstructed as N-periodic



DFT as an orthogonal transform

An orthogonal transform (e.g. DFT) is a decomposition of a function (signal)
on a set of orthogonal basis functions φk [n].

x[n] =
1
N

N−1

∑
k=0

A(k) ·φk [n]

Because of φk [n] orthogonality, A(k) are easy to calculate:

A(k) =
N−1

∑
n=0

x(n) ·φ∗k (n)

Basis sequences (transform kernel) have to be orthogonal:

1
N

N−1

∑
k=0

φk (n) ·φ∗m(n) =

{
1 m = k
0 otherwise

Scalar product is zero = orthogonal!

DFT basis functions φk (n) = e−jnθk = e−j2πnk/N are orthogonal – we chose
θk so it be!



Inverse DFT

Let’s take forward DFT definition as a linear equation set, with x0[n] as
unknowns. When we multiply both sides by e j2π rk /N , r = 0, 1, . . . , N − 1
and sum for k = 0, 1, . . . , N − 1

N−1

∑
k =0

X0(k) ej 2π rk /N =
N−1

∑
k =0

[
N−1

∑
n=0

x0(n)e−j2πnk /N

]
e j2πrk /N =

=
N−1

∑
k =0

N−1

∑
n=0

x0(n)e j2πk(r−n)/N =
N−1

∑
n=0

x0(n)
N−1

∑
k =0

e j2πk (r−n)/N

N−1

∑
k =0

e j2πk (r−n)/N =

{
N, r = n
0, r 6= n

⇒
N−1

∑
k =0

X0(k)e j2πr k /N = N x0(r), r = 0, 1, . . . , N − 1

x0(n) =
1
N

N−1

∑
k =0

X0 (k)e j2πnk /N , n = 0, 1, . . . , N − 1



Forward and Inverse DFT - transformation matrix

F (x) = F · x
F−1 ·F (x) = F−1 ·F · x
F−1 ·F (x) = x

algebraic trivia:
How to construct F matrix? Fkn = e−j2πnk/N

What is F−1? (not-so-trivial, but see IDFT slide)
Note nice properties of F matrix...

Entertainment maths
When we define F as mathematicians like it – with factor of 1/

√
N at both

forward and inverse transform, then:
I F (F (x)) gives x(−n)

I F (F (F (F (x)))) gives again x
I F (F (F (x))) gives F −1(x)

The same happens with F matrix, of course.



Problems to be studied

What happens to the spectrum (and DFT) when
I Signal is inverted in time x1(n) = x(−n)

I Signal is upsampled by factor of two x1(2n) = x(n); x1(2n + 1) = 0 (or
three, or more)

I Signal is extended with zeros (zero-padded) to a double/triple/. . . length
I Signal is decimated (downsampled)

x1(n) = x(2n); odd samples x(2n + 1) are discarded
I Signal is modulated with (−1)n, with a complex cosine ejθ0n, real cosine

cos(θ0n) or real sine . . .

Decimation
When Roman soldiers ran away chased by Spartakus, Marcus Licinius
Krassus ordered to kill one out of each ten – deci – of them. The morale has
risen, and next time they were more eager to be killed in the battlefield. In
three years, they defeated Spartakus at the Silarus river.

The decimation factor (defined as Noriginal/Nleft ) was 10/9 in that case – in
signal practice the factor is usually 2, 4, or even 2K


