\mathbf{E}	DISP $2013/2013$ – Test 1, $3.12.2013$ version A
	Name: 2 3
	For short problems, try to write the answer in the provided space. Put your calculations and longer solutions on the reverse or on an additional sheet marked with your name. $ \frac{5}{6} $
1.	A DT system is described as follows $(a = 0.9)$:
	$T(x[n]) = \sum_{l=0}^{+\infty} a^l x[n-l]$
	(a) (1 p.) Can the system be analyzed with impulse response? yes/no: . Verify the conditions formally, present proof on the reverse side.
	(b) (2 p.) If the answer in 1a is yes, verify stability using $h(n)$, else - calculating the B_y . Present calculations on the reverse side. Is the system stable? yes/no:
2.	(2 p.) A periodic signal $x(t)$ with the period of 9.5 ms was sampled with sampling frequency of 1 kHz.
	(a) Calculate normalized frequency f_n and normalized angular frequency θ of $x[n]$. Answer: $f_n = \boxed{}$, $\theta = \boxed{}$. Calculation:
	(b) What is the period of the resulting signal $x[n]$? Answer: Calculation:
3.	(1 p.) A 1024-point FFT takes 10 ms on a certain computing platform. Calculate approximate time needed for a 4096-point transform. Answer: Calculations:
4.	(3 p.) Let $x[n]$ be defined as $x(n) = \delta(n-1) + \delta(n+1)$. Plot (on one picture) the amplitude of Fourier transform of $x[n]$ and of the 8 point DFT of $x[n]$ (assume the DFT summation interval from $n = -4$ to $+3$) Mark the horizontal axis appropriately for both cases.
5.	(2 p.) A signal $x[n] = \delta(n) + \delta(n-40)$ is applied to the input of an LTI system described by its impulse response $h(n) = u(n) - u(n-5)$. Calculate total number of nonzero samples in the output signal. Answer: Calculations:
6.	(2 p.) Let $X(k)$ be an N-point DFT of a certain signal $x(n)$ ($x[n]$ nonzero for $n = 0N - 1$. Calculate an N-point DFT $X_s(k)$ of another signal $x_s(n) = x(n) + x(N-n)$. Assume N is even. Answer:

EDISP 2013/2013 – Test 1, 3.12.2013 $\mathbf{version}~\mathbf{A}$

 $\Sigma = 13p\ T = 45\ min$

\mathbf{E}	DISP $2013/2013$ – Test 1, $3.12.2013$ version B
	Name: 2 3
	For short problems, try to write the answer in the provided space. Put your calculations and longer solutions on the reverse or on an additional sheet $\frac{5}{5}$ marked with your name.
1.	A DT system is described as follows $(a = 1.1)$:
	$T(x[n]) = \sum_{l=0}^{+\infty} a^{-l} x[n-l]$
	(a) (1 p.) Can the system be analyzed with impulse response? yes/no: . Verify the conditions formally, present proof on the reverse side.
	(b) (2 p.) If the answer in 1a is yes, verify stability using $h(n)$, else - calculating the B_y . Present calculations on the reverse side. Is the system stable? yes/no:
2.	(2 p.) A periodic signal $x(t)$ with the period of 4.5 ms was sampled with sampling frequency of 1 kHz.
	(a) Calculate normalized frequency f_n and normalized angular frequency θ of $x[n]$. Answer: $f_n = \boxed{}$, $\theta = \boxed{}$. Calculation:
	(b) What is the period of the resulting signal $x[n]$? Answer: Calculation:
3.	(1 p.) A 1024-point FFT takes 10 ms on a certain computing platform. Calculate approximate time needed for a 256-point transform. Answer:
4.	(3 p.) Let $x[n]$ be defined as $x(n) = \delta(n-1) - \delta(n+1)$. Plot (on one picture) the amplitude of Fourier transform of $x[n]$ and of the 8 point DFT of $x[n]$ (assume the DFT summation interval
	from $n = -4$ to $+3$) Mark the horizontal axis appropriately for both cases.
5.	(2 p.) A signal $x[n] = \delta(n) + \delta(n-30)$ is applied to the input of an LTI system described by its impulse response $h(n) = u(n) - u(n-7)$. Calculate total number of nonzero samples in the output signal. Answer: Calculations:
6.	(2 p.) Let $X(k)$ be an N-point DFT of a certain signal $x(n)$ ($x[n]$ nonzero for $n = 0 \dots N - 1$. Calculate an N-point DFT $X_s(k)$ of another signal $x_s(n) = x(n) - x(N - n)$. Assume N is even. Answer:

EDISP 2013/2013 – Test 1, 3.12.2013 $\mathbf{version}~\mathbf{B}$

 $\Sigma = 13p\ T = 45\ min$