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Filters 3

> IR - impulse/step response invariance
> IR - optimization methods
» Tips, tricks, examples



Impulse/step response invariance

h(n) = Tshe(nTs)
— aliasing in frequency domain!
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Step invariance - similar way, slightly different results

CT filter in partial fraction exp



lIR - CAD (optimization) methods

— Approximate an ideal Ay(0)
» minimize error on discrete set of frequencies 6;

Emx = maxic1,4|A(6:) — Ao(8;)]
> easier: .
eap =Y [A(B)) — Ao(8))]*°
i=1
with p >> 1 (p =1 - mean square; p—o - €op—>Emx)
» use well-known gradient optimization method

" A4a,z '+ bz 2 ,
H(z)=H biquad sections
(2) H 14+crz 1+ dpz2 (biqu lons)
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iterative solution of &ZBPTET") =0, ¢=|ay, by, &1, di, a, ...
(nonlinear!)



Example - comob filter
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Example - comob filter
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Comb filter practical tricks

We want to make a simple LP filter h(n) = Y£_,8(n— k)

sin(K/26)

(rectangular impulse response, A(0) = Sin(®) ).
We need it for decimating the signal after filtering...
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—K . .
H(z) = Y oz % = 12— (geometrical series...)
1

Cascade integrator Hi (z) = ;——= with a comb filter Hp(z) =1 -2z~
put decimator by K between integrator and comb
— comb becomes 1 — z~' (differentiator)

K

warnings (integrator):

> integrator itself is unstable

» DC component will always overflow the integrator

> some tricks with integrator/comb arithmetic (2’'s complement) could help
Some correction of characteristics is needed afterwards (LP was simple,
not ideal)



Calculating convolution (=filtering) by FFT

X(0)-Y(0) — Z(8)
1 ]

x(n)xy(n)  —  z(n)

When one signal is loooooong. . .

» Cut signal in pieces

» for each piece
> calculate its FFT
> multiply by FFT of the other signal
> calculate the IFFT

» put pieces together (beware of circular convolution )
> overlap-save method
> overlap-add method

Never use windows with it! < joke >Use Linux< /joke >



Circular convolution (problem: we want LINEAR conv.!)

periodic copy periodic copy
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Circular convolution (problem solved at some cost)

periodic copy L N=L+M-1 periodic copy
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Linear convolution with help of circular

periodic copy L N=L+M-1 periodic copy
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Overlap-save

see the blackboard (;-)
(overlapping blocks on input, bad “tails” of result discarded)



Overlap-add
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from Wikipedia



