
EDISP (Filters 3)
(English) Digital Signal Processing

Digital (Discrete Time) advanced filters - tips &
tricks

lecture

November 25, 2014

Filters 3

I IIR - impulse/step response invariance
I IIR - optimization methods
I Tips, tricks, examples

Impulse/step response invariance

h(n) = Tshc(nTs)

−→ aliasing in frequency domain!

Hc(s) =
N

∑
k=1

Ak

s− sk
CT filter in partial fraction exp

hc(t) = u(t)
N

∑
k=1

Ak esk t

hn =
N

∑
k=1

TsAk esk nTs ·u(n)

=
N

∑
k=1

TsAk (esk Ts)n ·u(n)

H(z) =
N

∑
k=1

TsAk

1− (esk Ts)z−1

Step invariance - similar way, slightly different results

IIR - CAD (optimization) methods

−→ Approximate an ideal A0(θ)

I minimize error on discrete set of frequencies θi

εmx = max i∈[1,L]|A(θi)−A0(θi)|

I easier:

ε2p =
L

∑
i=1

[A(θi)−A0(θi)]2p

with p >> 1 (p = 1 - mean square; p−→∞ - ε2p−→εmx)

I use well-known gradient optimization method

H(z) = H
n

∏
n=1

1 + anz−1 + bnz−2

1 + cnz−1 + dnz−2 (biquad sections)

iterative solution of δε2p(Φn)

δΦn
= 0, Φ = [a1, b1, c1, d1, a2, . . .]

(nonlinear!)

Example - comb filter

a0 = 1, aK =−1, a1...K−1 = 0

H(z) = 1− z−K

H(θ) = 1−e−jK θ = 1− cos(K θ) + jsin(K θ)

Example - comb filter

a0 = 1, aK =−1, a1...K−1 = 0
H(z) = 1− z−K

H(θ) = 1−e−jK θ = 1− cos(K θ) + jsin(K θ)

Comb filter practical tricks

We want to make a simple LP filter h(n) = ∑
K
k=0 δ(n− k)

(rectangular impulse response, A(θ) = sin(K/2θ)
sin(θ)).

We need it for decimating the signal after filtering...

I H(z) = ∑
K
k=0 z−k = 1−z−K

1−z−1 (geometrical series...)

I Cascade integrator H1(z) = 1
1−z−1 with a comb filter H2(z) = 1− z−K

I put decimator by K between integrator and comb
−→ comb becomes 1− z−1 (differentiator)

I warnings (integrator):
I integrator itself is unstable
I DC component will always overflow the integrator
I some tricks with integrator/comb arithmetic (2’s complement) could help

I Some correction of characteristics is needed afterwards (LP was simple,
not ideal)

Calculating convolution (=filtering) by FFT

X(θ) ·Y (θ) −→ Z (θ)
↑ ↓

x(n)∗ y(n) −→ z(n)

When one signal is loooooong. . .
I Cut signal in pieces
I for each piece

I calculate its FFT
I multiply by FFT of the other signal
I calculate the IFFT

I put pieces together (beware of circular convolution)
I overlap-save method
I overlap-add method

Never use windows with it! < joke >Use Linux< /joke >

Circular convolution (problem: we want LINEAR conv.!)

Circular convolution (problem solved at some cost)

Linear convolution with help of circular

Overlap-save

see the blackboard (;-)
(overlapping blocks on input, bad “tails” of result discarded)

Overlap-add

from Wikipedia

