EDISP (Filters 3)

(English) Digital Signal Processing
Digital (Discrete Time) advanced filters - tips &
tricks
lecture

November 25, 2014

Filters 3

> IR - impulse/step response invariance
> IR - optimization methods
» Tips, tricks, examples

Impulse/step response invariance

h(n) = Tshe(nTs)
— aliasing in frequency domain!
N

He(s) = k; p—y

he(t) = u(t) i At
k=1

Ak

TsAeS"Ts . u(n)

S
I
=

=
Il
o

TsAk(eS"TS)n~ u(n)

Il
M=

=
Il
o

N
TsAk
H@) = Y T (eam)z

k=1
Step invariance - similar way, slightly different results

CT filter in partial fraction exp

lIR - CAD (optimization) methods

— Approximate an ideal Ay(0)
» minimize error on discrete set of frequencies 6;

Emx = maxic1,4|A(6:) — Ao(8;)]
> easier: .
eap =Y [A(B)) — Ao(8))]*°
i=1
with p >> 1 (p =1 - mean square; p—o - €op—>Emx)
» use well-known gradient optimization method

" A4a,z '+ bz 2 ,
H(z)=H biquad sections
(2) H 14+crz 1+ dpz2 (biqu lons)

n=1

iterative solution of &ZBPTET") =0, ¢=|ay, by, &1, di, a, ...
(nonlinear!)

Example - comob filter

z-1 z-1 z-1

NN N N Ny N N
B
30:13 aK:_17 al. . K—1 =0

Example - comob filter

NG Ny
)
30:1, aK:_17 al..K—1 =0
H(z)=1- z"f
H(8) = 1— e *® =1 — cos(K®) + jsin(K9)
T IV
\ / \
\\\ //’
0.5 0.5 \\\\ ///

Comb filter practical tricks

We want to make a simple LP filter h(n) = Y£_,8(n— k)

sin(K/26)

(rectangular impulse response, A(0) = Sin(®)).
We need it for decimating the signal after filtering...

>

| 2

>

—K . .
H(z) = Y oz % = 12— (geometrical series...)
1

Cascade integrator Hi (z) = ;——= with a comb filter Hp(z) =1 -2z~
put decimator by K between integrator and comb
— comb becomes 1 — z~' (differentiator)

K

warnings (integrator):

> integrator itself is unstable

» DC component will always overflow the integrator

> some tricks with integrator/comb arithmetic (2’'s complement) could help
Some correction of characteristics is needed afterwards (LP was simple,
not ideal)

Calculating convolution (=filtering) by FFT

X(0)-Y(0) — Z(8)
1]

x(n)xy(n) — z(n)

When one signal is loooooong. . .

» Cut signal in pieces

» for each piece
> calculate its FFT
> multiply by FFT of the other signal
> calculate the IFFT

» put pieces together (beware of circular convolution)
> overlap-save method
> overlap-add method

Never use windows with it! < joke >Use Linux< /joke >

Circular convolution (problem: we want LINEAR conv.!)

periodic copy periodic copy

&\\\\\\\\\.\\\\\\k\&\\\\\\\\\\\\\@

//////
W//%//

W

Circular convolution (problem solved at some cost)

periodic copy L N=L+M-1 periodic copy

AT N N RN

Linear convolution with help of circular

periodic copy L N=L+M-1 periodic copy

AT N N RN

Overlap-save

see the blackboard (;-)
(overlapping blocks on input, bad “tails” of result discarded)

Overlap-add

L L
x(t)] | [
| e lfsl,
w(t) vz
P+
w(t) 2z 7777
R
t(t) 2]
-1 (t)]
e /o e A F=TEF T BT RN,

from Wikipedia

