Homework1 - LTI systems, FT of DT signals

1. Determine whether the system has the following properties: stability, causality, linearity, time-invariance, memorylessness. Present your reasoning!

$$
\begin{gathered}
T(x[n])=a \cdot x[n] \\
T(x[n])=z[n] \cdot x[n], \text { where } z[n]=(-1)^{n} \text { is a fixed sequence of coefficients } \\
T(x[n])=x\left[n-n_{0}\right] \\
T(x[n])=a x[n]+b \\
T(x[n])=a x[n]+b x[n-3] \\
T(x[n])=y[n], y(n)=a x(n)+b \cdot n
\end{gathered}
$$

2. For the systems from previous item that are LTI, calculate impulse responses and unit responses. Does it make sense to analyze impulse response of a system that is not LTI? (Why?)
3. An LTI system is described by its impulse response $h[n]$. For input $x[n]$ it gives output $y[n]$.
(a) $h[n]=u(n)-u(n-N), x[n]=u(n)-u(n-M)$; find $y[n]$
(b) $h[n]$ is nonzero from $n=0$ to $N-1, x[n]$ is nonzero from $n=0$ to $M-1$; where may $y[n]$ be nonzero?
(c) $h[n]$ is nonzero only for $N_{0} \leq n \leq N_{1},\left[x[n]\right.$ is nonzero only for $N_{2} \leq n \leq N_{3}$. Find N_{4} and N_{5} which fulfill [$y[n]$ is nonzero only for $N_{4} \leq n \leq N_{5}$. Express N_{4} and N_{5} in terms of $N_{0}, N_{1}, N_{2}, N_{3}$.
4. A DT signal $x[n]$ was created by sampling a 6 kHz sine wave with 10μ s sampling period. Find the normalized frequency, normalized angular frequency, period of $x[n]$.
5. An LTI system has an impulse response $h[n]$. How can you calculate the step response $k[n]$ from $h[n]$? ($k[n]$ is the response of the system when $u[n]$ is at the input).
6. Let $x[n]$ be a finite length sequence of length N. Let us define two sequences of length $N_{2}=2 N$:
$x_{1}(n)=\left\{\begin{array}{c}x(n) \quad 0 \leq n \leq N-1 \\ 0 \quad \text { otherwise } \\ x(n) \\ x_{2}(n)=n \leq N-1 \\ -x(n-N)\end{array} \quad N \leq n \leq 2 N-1\right.$
a zero-padded version of $x[n]$
a combination of $x_{1}(n)$ and a sequence which can be computed from x_{1}
X_{1}, X_{2}, X_{3} denote DFT's of respective x 's.

- How to compute $X[k]$ from $X_{1}[k]$ (note that we compute transform of short one from long one; the other way it is much harder!)?
- How to compute $X_{2}[k]$ from $X_{1}[k]$? (hint: DFT is linear)

Hint: Start from sketching an example of x_{1}, x_{2}, x_{3}.
7. Let $x[n]$ be a periodic sequence with period N_{1}. Thus $x[n]$ is also periodic for period $N_{2}=2 N_{1}$. We may compute $X_{1}[k]-N$-point DFT of $x[n]$ and $X_{2}[k]-2 N$-point DFT of $x[n]$.

- express X_{2} in terms of X_{1}

Hint: it is easy with even samples $X_{2}(2 m)$, harder with odd ones $X_{2}(2 m+1), m \in \mathbb{Z}$ (set of integers)

- invent an example with $N_{1}=4$ and calculate X_{1} and X_{2} by hand.

If it was too easy, try with $N_{3}=3 N$; when bored, try also $N_{4}=4 N$; start from guessing pairs of samples which are identical (or just scaled).
8. For hardcore math crackers only
$x[n]$ - real, finite length sequence. \mathcal{F} denotes Fourier transform of an L_{2} signal

$$
\begin{gathered}
X\left(e^{j \omega}\right)=\mathcal{F}(x[n]) \\
X[k]=\operatorname{DFT}(x[n]) \\
\Im\{X[k]\}=0
\end{gathered}
$$

Prove or reject: $\Im\left\{X\left(e^{j \omega}\right)\right\}=0$ where : \Im denotes imaginary part operator.
Hint: imagine two cases:
(a) $x[n]$ nonzero from 0 to L
(b) $x[n]$ nonzero from $-L / 2$ to $L / 2$ and symmetric around 0 (and DFT definition modified appropriately)

