Homework1 – LTI systems, FT of DT signals

1. Determine whether the system has the following properties: stability, causality, linearity, time-invariance, memorylessness. Present your reasoning!

$$T(x[n]) = a \cdot x[n]$$

$$T(x[n]) = z[n] \cdot x[n], \text{ where } z[n] = (-1)^n \text{ is a fixed sequence of coefficients}$$

$$T(x[n]) = x[n - n_0]$$

$$T(x[n]) = ax[n] + b$$

$$T(x[n]) = ax[n] + bx[n - 3]$$

$$T(x[n]) = y[n], \ y(n) = ax(n) + b \cdot n$$

- 2. For the systems from previous item that are LTI, calculate impulse responses and unit responses. Does it make sense to analyze impulse response of a system that is not LTI? (Why?)
- 3. An LTI system is described by its impulse response h[n]. For input x[n] it gives output y[n].
 - (a) h[n] = u(n) u(n N), x[n] = u(n) u(n M); find y[n]
 - (b) h[n] is nonzero from n = 0 to N 1, x[n] is nonzero from n = 0 to M 1; where may y[n] be nonzero?
 - (c) h[n] is nonzero only for $N_0 \le n \le N_1$, [x[n] is nonzero only for $N_2 \le n \le N_3$. Find N_4 and N_5 which fulfill [y[n] is nonzero only for $N_4 \le n \le N_5$. Express N_4 and N_5 in terms of N_0 , N_1 , N_2 , N_3 .
- 4. A DT signal x[n] was created by sampling a 6 kHz sine wave with 10 μ s sampling period. Find the normalized frequency, normalized angular frequency, period of x[n].
- 5. An LTI system has an impulse response h[n]. How can you calculate the step response k[n] from h[n]? (k[n] is the response of the system when u[n] is at the input).
- 6. Let x[n] be a finite length sequence of length N. Let us define two sequences of length $N_2 = 2N$:

$$x_1(n) = \begin{cases} x(n) & 0 \le n \le N-1 \\ 0 & \text{otherwise} \end{cases}$$
 a zero-padded version of $x[n]$
$$x_2(n) = \begin{cases} x(n) & 0 \le n \le N-1 \\ -x(n-N) & N \le n \le 2N-1 \end{cases}$$
 a combination of $x_1(n)$ and a sequence which can be computed from x_1

 X_1, X_2, X_3 denote DFT's of respective x's

- How to compute X[k] from $X_1[k]$ (note that we compute transform of short one from long one; the other way it is much harder!)?
- How to compute $X_2[k]$ from $X_1[k]$? (hint: DFT is linear)

Hint: Start from sketching an example of x_1 , x_2 , x_3 .

- 7. Let x[n] be a periodic sequence with period N_1 . Thus x[n] is also periodic for period $N_2 = 2N_1$. We may compute $X_1[k] N$ -point DFT of x[n] and $X_2[k] 2N$ -point DFT of x[n].
 - express X_2 in terms of X_1 Hint: it is easy with even samples $X_2(2m)$, harder with odd ones $X_2(2m+1)$, $m \in \mathbb{Z}$ (set of integers)
 - invent an example with $N_1 = 4$ and calculate X_1 and X_2 by hand.

If it was too easy, try with $N_3 = 3N$; when bored, try also $N_4 = 4N$; start from guessing pairs of samples which are identical (or just scaled).

8. For hardcore math crackers only

x[n] - real, finite length sequence. \mathcal{F} denotes Fourier transform of an L_2 signal

$$X(e^{j\omega}) = \mathcal{F}(x[n])$$
$$X[k] = \text{DFT}(x[n])$$
$$\Im\{X[k]\} = 0$$

Prove or reject: $\Im\{X(e^{j\omega})\}=0$ where : \Im denotes imaginary part operator. Hint: imagine two cases:

- (a) x[n] nonzero from 0 to L
- (b) x[n] nonzero from -L/2 to L/2 and symmetric around 0 (and DFT definition modified appropriately)

File: homew1 Revision: 1.4a LATEXed on November 19, 2014