EDISP (Filters 3)
 (English) Digital Signal Processing
 Digital (Discrete Time) advanced filters - tips \& tricks
 lecture

February 10, 2015

Filters 3

- IIR - impulse/step response invariance
- IIR - optimization methods
- Tips, tricks, examples

Impulse/step response invariance

$$
h(n)=T_{s} h_{c}\left(n T_{s}\right)
$$

\longrightarrow aliasing in frequency domain!

$$
\begin{aligned}
& H_{c}(s)=\sum_{k=1}^{N} \frac{A_{k}}{s-s_{k}} \text { CT filter in partial fraction exp } \\
& h_{c}(t)= u(t) \sum_{k=1}^{N} A_{k} e^{s_{k} t} \\
& h_{n}= \sum_{k=1}^{N} T_{s} A_{k} e^{s_{k} n T_{s}} \cdot u(n) \\
&= \sum_{k=1}^{N} T_{s} A_{k}\left(e^{s_{k} T_{s}}\right) n \cdot u(n) \\
& H(z)=\sum_{k=1}^{N} \frac{T_{s} A_{k}}{1-\left(e^{s_{k} T_{s}}\right) z^{-1}}
\end{aligned}
$$

Step invariance - similar way, slightly different results

IIR - CAD (optimization) methods

\longrightarrow Approximate an ideal $A_{0}(\theta)$

- minimize error on discrete set of frequencies θ_{i}

$$
\varepsilon_{m x}=\max _{i \in[1, \iota]}\left|A\left(\theta_{i}\right)-A_{0}\left(\theta_{i}\right)\right|
$$

- easier:

$$
\varepsilon_{2 p}=\sum_{i=1}^{L}\left[A\left(\theta_{i}\right)-A_{0}\left(\theta_{i}\right)\right]^{2 p}
$$

with $p \gg 1$ ($p=1$ - mean square; $p \longrightarrow \infty-\varepsilon_{2 p} \longrightarrow \varepsilon_{m x}$)

- use well-known gradient optimization method

$$
H(z)=H \prod_{n=1}^{n} \frac{1+a_{n} z^{-1}+b_{n} z^{-2}}{1+c_{n} z^{-1}+d_{n} z^{-2}} \quad \text { (biquad sections) }
$$

iterative solution of $\frac{\delta \varepsilon_{2 p}\left(\Phi_{n}\right)}{\delta \Phi_{n}}=0, \Phi=\left[a_{1}, b_{1}, c_{1}, d_{1}, a_{2}, \ldots\right]$ (nonlinear!)

Example - comb filter

$$
a_{0}=1, a_{K}=-1, a_{1 \ldots K-1}=0
$$

Example - comb filter

$a_{0}=1, a_{K}=-1, a_{1 \ldots K-1}=0$
$H(z)=1-z^{-K} \longrightarrow K$ zeros on the unit circle ($K-$ th roots of unity)
$H(\theta)=1-e^{-j K \theta}=e^{-j K \theta / 2}\left(e^{+j K \theta / 2}-e^{-j K \theta / 2}\right)=e^{-j K \theta / 2}(2 j \sin K \theta / 2)$

Comb filter practical tricks

We want to make a simple LP filter $h(n)=\sum_{k=0}^{K} \delta(n-k)$ (rectangular impulse response, $A(\theta)=\frac{\sin (K / 2 \theta)}{\sin (\theta)}$).
We need it for decimating the signal after filtering...

- $H(z)=\sum_{k=0}^{K} z^{-k}=\frac{1-z^{-K}}{1-z^{-1}}$ (geometrical series...)
- Cascade integrator $H_{1}(z)=\frac{1}{1-z^{-1}}$ with a comb filter $H_{2}(z)=1-z^{-K}$
- put decimator by K between integrator and comb
\longrightarrow comb becomes $1-z^{-1}$ (differentiator)
- warnings (integrator):
- integrator itself is unstable
- DC component will always overflow the integrator
- some tricks with integrator/comb arithmetic (2's complement) could help
- Some correction of characteristics is needed afterwards (LP was simple, not ideal)

Calculating convolution (=filtering) by FFT

When one signal is loooooong. . .

- Cut signal in pieces
- for each piece
- calculate its FFT
- multiply by FFT of the other signal
- calculate the IFFT
- put pieces together (beware of circular convolution)
- overlap-save method
- overlap-add method

Never use windows with it! < joke $>$ Use Linux $</$ joke $>$

Circular convolution (problem: we want LINEAR conv.!)

Circular convolution (problem solved at some cost)

Linear convolution with help of circular

Overlap-save

see the blackboard (;-)
(overlapping blocks on input, bad "tails" of result discarded)

Overlap-add

from Wikipedia

