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How an LTI system filters signals

> A practical system and its difference equation
» Difference equation and H(z)

» Short path: system — H(z)

» System defined by H(z) + sinusoidal signal
» Is my filter stable?



System and its difference equation
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Difference equation and H(z)

z~ 1 - shift operator
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System and its H(z)
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H(z) to h(n) (or how to find Z~ )
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System defined by H(z) + complex sinusoid
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If x(n) is periodic - we can decompose it into harmonics (linearity).



System defined by H(z) + sine/cosine signal

= & —|h(n) = y(n) = &°H(")

s(nB) = 1/2- (& + oi"®)

so if x(n) = cos
=1/2:(-H(e?)e™ + H(e ®)e )

then y(n)
H(e®) = A(8)e*®
and y(n) = A(6)-1/2- (/™ 4 /). £/0(9)

(for a real h(n) ¢(8) is odd: ¢(—6) = —(8))
and y(n) = (9) 1/2. (ei(n9+¢(6)) _|_e*j(n6+¢(9)))

y(n) = A(8) - cos(nb + 0(0))
Repeat the same with sin() — at home.
E.g. x(n) = 3+ 5sin(0.1tn) — a DC component and a 0.17 sinusoidal

signal. So y(n) = A(0) -3+ A(0.1m) - 5sin(0.1tn+ ¢(0.17)).
Note: Z-transform is NOT a good tool to calculate this!!



Filter stability

We may check stability:
» from impulse response Y i, |A(k)| < oo
» at first glance: FIR is always stable (see above)
» from H(z): a pole di produces a term

Ax

gz M= (-da)-X()

z=dk
in the partial fraction expansion of H(z) ;

ﬁ is a Z transform of dfu(n),

which is a stable term in h(n) if |dk| < 1.

— all poles must be inside unit circle |z| = 1 (for a stable causal
system)

outside for an anticausal one

» by time-domain analysis by hand (recommended only as last resort)



Filter design in practice

FIR - window method (LP example, BP/HP howto)

FIR - optimization methods (Parks-McClellan, called also Remez)
IIR - bilinear transformation

IIR - impulse/step response invariance (next lecture)

vV v.v. vy

IIR - optimization methods (next lecture)



FIR LP filter by window method

LP filter - pass from —6, to +6,
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Cut at order 120. Shift to be
causal.




FIR - optimization methods
Window method - simple, easy, all under strict control. But is it “best” filter for
given order?
yes a rectangular window gives best approximation in the MS sense

no we know about problems (Gibbs effect) at the discontinuities so we try to
cheat with Windows
So, Parks & Mc Clellan (1972) used Chebyshev (minimax) approximation on
discrete set of points in 6. They applied E. Ya. Remez (1934) algorithm.

~ Approx 12 iterations needed.



[IR - bilinear transformation

We use analog filter prototype:
» good theory
» prototype polynomials — known properties
» tables, methods

“Copy” a CT prototype H(s) to DT domain H(z):

1_
1+ -1

» — substitute s = (trape20|dal inetgration of H(s) with step Ty

roll the jo line to e"” circle

>

> A point 6 is mapped from © = Z tan(6/2)

» — we need to pre-warp our frequency characteristics from 0 to ®
>

Stability — left half-plane transformed into inside of unit circle (OK!)




lIR - bilinear transformation - analog prototypes
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[IR - bilinear transformation - Matlab

> Filtering: y=filter (B,A, x);
B - numerator coefficients
A - denominator coefficients (if FIR — A = [1])
X - input samples vector
» Filter characteristics: [h, w]=freqz (B, A);
w frequency values,
abs (h) amplitude characteristics
» Filter design specification: frequency from 0.0 (— zero) to 1.0 (—
fs/2)
» Window method (FIR): B = FIR2 (N, F,A[, window]);
N order
F frequency points
A amplitude characteristics at points specified by F
window e.g. Bartlett(N+1) or chebwin(N+1, R)
> |IR bilinear method (Butterworth as example):
[N, wn]=buttord(Wp, Ws, Rp, Rs);
Wop, Ws passband freq, stopband freq,
Rp, Rs ripple in passband, ripple in stopband
N, wn order and 3dB point warped and adjusted
[B,A]=butter (N, wn);
does the polynomial design and bilinear transform.



