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DFT resolution

I N-point DFT −→ frequency sampled at θk = 2πk
N , so the resolution is

fs/N
I If we want more, we use N1 > N filling with zeros (zero-padding)
I but IDFT will give N1-periodic signal
I and the spectrum will have sidelobes



Limited observation time
For DFT we used to cut a fragment of the signal

x0[n] = x[n]g[n], where g[n] =

{
1 for n = 0, 1, . . . , N − 1
0 for other n

g[n] is a window function. Here - a boxcar window
Window effect:

I selection of a signal fragment
I x[n] ·g[n] in time −→ X(θ)∗G(θ) in spectral domain −→ sidelobes or

spectral leakage



Windowing a pure cosine

Example to be done on slide, temporarily on blackboard (:-).



Leakage example



Window (apodization) functions



Raised cosine window family

I Hann window: Julius von Hann, 1839 – 1921, Austrian meteorologist;
hanning is a verb form (to hann) w(n) = 0.5

(
1− cos

(
2πn
N−1

))
I Hamming window: Richard Hamming, 1915 – 1998, American

mathematician; w(n) = 0.53836−0.46164 cos
(

2πn
N−1

)
I Blackman window w(n) = 0.42−0.5cos

(
2πn
N−1

)
+0.08cos

(
4πn
N−1

)



Kaiser window

(D. Slepian, H.O. Pollak, H.J. Landau, around 1961, Prolate spheroidal wave
functions . . . )

I time limited sequence with energy concentrated in finite frequency
interval

I a family of windows with many degrees of freedom
I Kaiser (1974) – an approximation to optimal window: standard method

to compute the optimal window was numerically ill-conditioned.

wn =


I0

(
α

√
1−( 2n

N −1)
2
)

I0(α)
if 0≤ n ≤ N

0 otherwise

I0 – zeroth order modified Bessel function of the first kind,
I α (real number) determines the shape of the window:

I α = 0 gives Boxcar,
I α = 4 gives -30 dB first sidelobe, -50 asymptotic,
I α = 8 gives -60 dB first sidelobe, -90 asymptotic,



Kaiser window



Fast DFT algorithms −→ FFT

I Direct computation with pre-computed twiddle factors
W kn

N = (WN)
kn = (e−j2π/N)kn

X
(

ejθk
)

=
N−1

∑
n=0

x (n)(WN)
kn

−→ complexity: N2 complex multiplications & additions
I Goertzel algorithm: X(k) = yk (N), where

yk(n) =
N−1

∑
r=0

x(r)W−k(n−r)
N

−→ filtering: yk(n) = x(n)+ yk (n−1) ·W−k
n

Also N2, but after decomposition majority is real×real (see next slide).
Useful when not all N frequencies are needed.

I Divide-by-two (or decimation) in time −→ FFT algorithm, complexity
N log2(N)



Goertzel algorithm (1958)
Calculate a single sample of DFT (at ω = ωk ) by filtering

Gerald Goertzel (1919 – 2002), theoretical physicist, worked with Manhattan
Project and later Sage Instruments and IBM

I A convolution with sinusoid: s(n) = x(n)+2cos(θk )s(n−1)− s(n−2)
I After N samples X(k) is computed as

X(k) = y(N) = s(n)−e−jθk s(n−1)

W k
N = (e

−j2π

N )k = e−jθk

w ′ = W−k
N +W k

N = 2cos( 2πk
N ) =

2cos(θk)

−1 = W k
N ·W

−k
N

. . . and many versions with special
tricks



Fast DFT algorithms −→ FFT

Decimation in time FFT (first stage):

X(k) =
N−1

∑
n=0

x(n)W nk
N =

= ∑
neven

x(n)W nk
N + ∑

nodd
x(n)W nk

N =

=
N/2−1

∑
r=0

x(2r)(WN/2)
rk +W k

N

N/2−1

∑
r=0

x(2r +1)(WN/2)
rk



radix-2 FFT

X(k) = ∑
neven

x(n)W nk
N + ∑

nodd
x(n)W nk

N =

N/2−1

∑
r=0

x(2r)(WN/2)
rk +W k

N

N/2−1

∑
r=0

x(2r +1)(WN/2)
rk

I If N = 2L . . . We can continue with this trick -
decimating each half into sub-halves, each
sub-half into sub-sub . . . L times

I for k > N/2, W k
N =−W k−N/2

N and FTN/2 is
periodic with period N/2

I DFT with size 1 is rather trivial

Effect: We have L layers of N/2 butterflies. Each but-
terfly is one multiplication, one addition, one subtrac-
tion. In the result, we have O(N log2 N) operations

FFT inventors

James W. Cooley and John W. Tukey, ”An algorithm for the machine calcula-
tion of complex Fourier series,” Math. Comput. 19, pp. 297-301 (1965).



8-point radix-2 FFT

8−point DFT
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8-point radix-2 FFT
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8-point radix-2 FFT

*W
0

N/2
*−1

*W
0

N/2
*−1

*W
1

N/2
*−1

*W
1

N/2
*−1

2−point DFT

2−point DFT

2−point DFT

2−point DFT

*Wn
0 *−1

*Wn
1 *−1

*Wn
2 *−1

*Wn
3 *−1

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

X(0)

X(1)

X(2)

X(3)

X(4)

X(6)

X(5)

X(7)



8-point radix-2 FFT
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Indexing for FFT

How to describe the sequence of numbers: 0, 4, 2, 6, 1, 5, 3, 7?
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I 0 = 0002 is at position 0002

I 4 = 1002 is at position 0012

I 2 = 0102 is at position 0102

I 6 = 1102 is at position 0112

I 1 = 0012 is at position 1002

I 5 = 1012 is at position 1012

I 3 = 0112 is at position 1102

I 7 = 1112 is at position 1112

−→ bit-reversal does the job!
Processors designed for FFT do have the bit-reversal mode of indexing. (And
they do a butterfly in one or two cycles)



Decimation in frequency FFT

I We split the definition formula for k even (= 2r) or odd (= 2r +1)

I We note that W 2nr
N = W nr

N/2 or W n(2r+1)
N = W n

N ·W nr
N/2

I Further, for n > N/2 W n
N =−W n−N/2

N

I and so on - please sketch the DIF FFT diagram by yourselves

−→ here, we need to re-index the frequencies...



Specials

I Non-radix2 FFT - slower than radix2, but still faster than direct
I Chirp-z transform - one use of it is to calculate FT for θ’s not equal to

2π/N
I Non-uniform FFT . . .
I FFTW - the Fastest FFT in the West - a free library, used by many free

and commercial products (Frigo & Johnson from MIT)



Summary

Fourier transforms:
I DTFT - spectrum of a discrete-time signal (defined for a limited-energy

signal or a limited mean power signal in a different manner) periodic,
continuous or discrete function of θ

I DFT - samples of DTFT of a limited duration signal (or a segment....)
periodic, discrete X(k)

I FFT - a trick (method[s]) to compute DFT efficiently



To window or not to window?

I If we need to analyse the signal - YES,
I If we need to manipulate spectrum and then reconstruct the signal back

- NO.


