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A simple FIR filter

Transversal structure – implements linear convolution

y(n) = b0x(n)+b1x(n−1)+b2x(n−2)+b3x(n−3)+b4x(n−4)

Y (z) = b0X(z)+b1X(z)z−1 +b2X(z)z−2 +b3X(z)z−3 +b4X(z)z−4

Y (z) = X(z)
(
b0 +b1z−1 +b2z−2 +b3z−3 +b4z−4)

H(z) = Y (z)/X(z) = b0 +b1z−1 +b2z−2 +b3z−3 +b4z−4

Impulse response

h(n) = b0δ(n)+b1δ(n−1)+b2δ(n−2)+b3δ(n−3)+b4δ(n−4)
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A simple FIR filter
Frequency response

H(z) = b0 +b1z−1 +b2z−2 +b3z−3 +b4z−4

H(ejθ) = b0 +b1e−jθ +b2e−j2θ +b3e−j3θ +b4e−j4θ

H(ejθ) = e−j2θ

(
b0e+j2θ +b1e+jθ +b2 +b3e−jθ +b4e−j2θ

)
It is easy to make the part (. . .) real-valued by introducing symmetry of coefficients

The polynomial of 4th order will have 4 roots (=zeros of the transfer function)

Zeros at the unit circle = notches in frequency response
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A simple IIR system (biquadratic section)
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Numerator = a polynomial of 2nd order −→ two zeros of transfer function

Denominator = a polynomial of 2nd order −→ two poles of transfer function
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A fourth order IIR system

Four poles in the vicinity of θ = 0, one four-fold zero at θ = π
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A fourth order IIR system

Z-plane viewed in 3D
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A fourth order IIR system

Four poles in the vicinity of θ = 0, one four-fold zero at θ = π

Poles keep passband up
Zeros form the stopband
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Frequency properties of a DT system

An LTI system is described with its impulse response

x[n] y [n]
h(k)

y(n) =
∞

∑
k=−∞

h(k) · x(n− k)

which is a description in time domain — but we are interested in its properties in the
frequency domain (frequency response)

H(ejθ) = H(z)|z=ejθ =
∞

∑
n=−∞

h(n)e−jnθ

Magnitude of fr. response A(θ) = |H(ejθ)|
Phase of fr. response ϕ(θ) = arg[H(ejθ)]
Group delay τ(θ) = −dϕ(θ)/dθ
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Filter design

Specification: stopband, passband, tolerances (ripple)

A
A
A
A
A
A

A0(ejθ)

π θ

0

Approximation: find best rational function which fits specifications

b0 +b1z−1 + . . .+bMz−M

1+a1z−1 + . . .+aNz−N (IIR)

or
b0 +b1z−1 + . . .+bMz−M (FIR)

determine order and coefficients, check stability

Implementation: structure, noise, hardware/software . . .
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Filter stability

We may check stability:

from impulse response ∑
∞
k=−∞ |h(k)|< ∞

at first glance: FIR is always stable (see above)

from H(z): a pole dk produces a term

Ak

1−dk z−1 , Ak = (1−dk z−1) ·X(z)
∣∣
z=dk

in the partial fraction expansion of H(z) ;

1
1−dk z−1 is a Z transform of dn

k u(n),
which is a stable term in h(n) if |dk |< 1.

−→ all poles must be inside unit circle |z|= 1 (for a stable causal system)
outside for an anticausal one

by time-domain analysis by hand (recommended only as last resort)
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Filter stability pitfalls
Side remarks on mathematics

A fundamental formula (absolute convergence): ∑
∞
k=−∞ |h(k)|< ∞ is sometimes

misunderstood:

It is NOT enough to check h(k)−→0 – a counterexample: ∑
∞
k=0 1/k diverges

It is NOT enough to check it without absolute value:

∑
∞
k=−∞ h(k)< ∞ – ∑

∞
k=0

(−1)k+1

k converges to ln2, but if you apply absolute value
you will get ∑

∞
k=0 1/k which diverges

For the last case do a math experiment: convolve h(k) = (−1)k+1

k

with x(n) = 1 – you will get an y(n) approaching ln2 for large n

with x(n) = (−1)n – you will get a divergent y(n)
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Filter types

LP lowpass – a basic type

HP highpass – how to make HP from LP? (Hint: hLP · (−1)n)

BP bandpass – combine LP with HP

BS bandstop

notch a very narrow bandstop (e.g with a zero on the unit circle)

allpass – usually used for correcting phase response
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Filter design in practice
Plan

FIR - window method (LP example, BP/HP howto)

FIR - optimization methods (Parks-McClellan, called also Remez)

IIR - bilinear transformation

IIR - impulse/step response invariance (next lecture)

IIR - optimization methods (next lecture)

EDISP (FILTlect) (English) Digital Signal ProcessingFilters & filter design April 28, 2015 13 / 21



FIR filter design – window method

Ideal filter: A0(θ) =

{
1 for |θ|< θp

0 for θp < |θ| ≤ π
and zero phase

Impulse response:

h0(n) =
1

2π

∫
π

−π

H0 (e
jθ ) ejnθ dθ =

θp

π

sin nθp

n θp

is non-causal and infinite!

Make it finite: hP [n] = h0[n]g[n] (g[n] = 0 for |n|> P)

Shift it to be causal – delay by P samples: h[n] = hP [n−P]

−→ finally we obtain

H(z) =
2P

∑
n=0

h(n) z−n = z−PHP(z)
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FIR LP filter by window method

LP filter - pass from −θp to +θp

h0(n)=
1

2π

∫
θp

−θp

ejnθ dθ =
θp

π

sin nθp

n θp

Cut at order 120. Shift to be causal.

EDISP (FILTlect) (English) Digital Signal ProcessingFilters & filter design April 28, 2015 15 / 21



FIR - optimization methods

Window method - simple, easy, all under strict control. But is it “best” filter for given
order?

yes a rectangular window gives best approximation in the MS sense

no we know about problems (Gibbs effect) at the discontinuities
so we try to cheat with Windows

So, Parks & Mc Clellan (1972) used Chebyshev (minimax) approximation on discrete
set of points in θ. They applied E. Ya. Remez (1934) algorithm.

Approx 12 iterations needed.
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IIR - bilinear transformation

We use analog filter prototype:

good theory

prototype polynomials −→ known properties

tables, methods, algorithms −→ well known and fast

“Copy” a CT prototype H(s) to DT domain H(z):

−→ substitute s = 2
Td

1−z−1

1+z−1 (trapezoidal inetgration of H(s) with step Td )

roll the jω line to ejω circle

A point θ is mapped from ω = 2
Td

tan(θ/2)

−→ we need to pre-warp our frequency characteristics from θ to ω

Stability −→ left half-plane transformed into inside of unit circle (OK!)
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Bilinear transformation: z-plane and s-plane

Res

Rez

Imz

θ =+π

θ =−π θ = 0

ω = 0
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o

Ims = jω
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IIR - bilinear transformation - analog prototypes

Butterworth (max. flat amplitude) Chebyshev type I

Chebyshev type II Cauer (elliptical)
Bessel - maximally flat phase
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IIR and FIR in Matlab
Utilities

Filtering: y=filter(B,A,x);
B - numerator coefficients
A - denominator coefficients (if FIR −→ A = [1])
x - input samples vector

Filter frequency response: [h, w]=freqz(B, A);
w frequency values (0 to π),

abs(h) Magnitude of response
angle(h) Phase of response (−π to π)

Filter group delay: [gd, w]=grpdelay(B, A);
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IIR and FIR in Matlab
Filter design

Filter design specification: frequency from 0.0 (−→ zero) to 1.0 (−→ fs/2)

Window method (FIR): B = FIR2(N,F,A[, window]);
N order
F frequency points
A amplitude characteristics at points specified by F

window e.g. Bartlett(N+1) or chebwin(N+1, R)

IIR bilinear method (Butterworth as example):
[N, wn]=buttord(Wp, Ws, Rp, Rs);

Wp, Ws passband freq, stopband freq,
Rp, Rs ripple in passband, ripple in stopband
N, wn order and 3dB point warped and adjusted

[B,A]=butter(N, wn);
does the polynomial design and bilinear transform.
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