Test $22017 l$ version \mathbf{A} - inst. spectrum, z-transform, filters
Please mark your name and test version on all your answer pages

1. (3 p.) The STFT (instantaneous spectrum) $X\left(e^{j \theta}, n\right)$ of the signal $x(n)$ (see plot)

is computed using rectangular window $g(k)$ of length $K=7$.

- For n given below, sketch $\left|X\left(e^{j \theta}, n\right)\right|$ for all θ;
then calculate numerical values of $X\left(e^{j \theta}, n\right)$ at $\theta=0, \pi / 2$ and π :
(a) $n=-3$.
(b) $n=0$.
(c) $n=+3$.
hint 1: Use the above plot to mark three positions of window.

2. (4 p.) Analyze a filter described with the following graph:

Assume $a=-0.81, b=+1$,
(a) Find $H(z)$

Hint: you may use $r(n)$ as a "helper" when writing the difference equation.
(b) Find zeros/poles and plot their location on z-plane. Check if the filter is stable
(c) Sketch approximate $A(\theta)$
(d) Calculate response $y(n)$ for $x(n)=3+\sin (n \pi / 2)$
(e) (extra points) Propose a modification of the filter graph, saving on delay blocks.
hint: $(1-c)(1+c)=1-c^{2},(1-\mathrm{j} c)(1+\mathrm{j} c)=1+c^{2}$
3. (2 p.) Calculate the z-transform and determine ROC (region of convergence) for the series:
(a) $\delta[n+2]$
(b) $\delta[n-1]+\delta[n+1]$
4. (3 p.) Calculate a causal $x(n)$ when $X(z)=\frac{1}{1-e^{j 3 \pi / 4} z^{-1}}+\frac{1}{1-e^{-j 3 \pi / 4} z^{-1}}$
-
5. (3 p.) A noncausal, zero-phase lowpass FIR filter with impulse response length equal to 15 was designed from windowed Inverse Fourier Transform of ideal filter frequency response. A rectangular window was used. Ideal filter cutoff was at $\theta_{b}=(1 / 2) \pi$.
(a) Calculate the group delay of the filter.
(b) Find the approximate width of the transition band in the frequency response.
(c) Sketch the impulse response.

Test 220171 version B - inst. spectrum, z-transform, filters
Please mark your name and test version on all your answer pages

1. (3 p.) The STFT (instantaneous spectrum) $X\left(e^{j \theta}, n\right)$ of the signal $x(n)$ (see plot)

is computed using rectangular window $g(k)$ of length $K=5$.

- For n given below, sketch $\left|X\left(e^{j \theta}, n\right)\right|$ for all θ;
then calculate numerical values of $X\left(e^{j \theta}, n\right)$ at $\theta=0, \pi / 2$ and π :
(a) $n=-3$.
(b) $n=0$.
(c) $n=+2$.
hint 1: Use the above plot to mark three positions of window.

2. (4 p.) Analyze a filter described with the following graph:

Assume $a=+0.81, b=-1$,
(a) Find $H(z)$

Hint: you may use $r(n)$ as a "helper" when writing the difference equation.
(b) Find zeros/poles and plot their location on z-plane. Check if the filter is stable
(c) Sketch approximate $A(\theta)$
(d) Calculate response $y(n)$ for $x(n)=(-1)^{n}+\cos (n \pi / 2)$
(e) (extra points) Propose a modification of the filter graph, saving on delay blocks.
hint: $(1-c)(1+c)=1-c^{2},(1-\mathrm{j} c)(1+\mathrm{j} c)=1+c^{2}$
3. (2 p.) Calculate the z-transform and determine ROC (region of convergence) for the series:
(a) $\delta[n-20]$
(b) $\delta[n-3]+\delta[n+3]$
4. (3 p.) Calculate a causal $x(n)$ when $X(z)=\frac{j}{1-e^{j \pi / 4} z^{-1}}-\frac{j}{1-e^{-j \pi / 4} z^{-1}}$
-
5. (3 p .) A noncausal, zero-phase lowpass FIR filter with impulse response length equal to 11 was designed from windowed Inverse Fourier Transform of ideal filter frequency response. A rectangular window was used. Ideal filter cutoff was at $\theta_{b}=(1 / 2) \pi$.
(a) Calculate the group delay of the filter.
(b) Find the approximate width of the transition band in the frequency response.
(c) Sketch the impulse response.

$\Sigma=15 p T=75 \mathrm{~min}$

