EDISP (NWL2)
(English) Digital Signal Processing
Implementing signal processing

December 7, 2016

Scalar product

n
a-b=(ab)=Y abj=aibi+abz+ +anbn
i=1
» Convolution
> FIR filter (direct)
» [IR filter (direct - use for low orders only!!)

w(n) = x(n) — (alk], w[n— k])

y(n) = bow(n) + (blk], wn— k])

» matrix multiply y = ax b — yim = (@, b.m)
» We need to repeat (length times)

> fetcha
» fetch b
> multiply and accumulate

» Do it in parallel or sequentially?

Arithmetics

» Floating point problems:
> Speed
» Conversion from A/D native format
» Fixed point problems:
> (overflows) 16 bits + 16 bits= 17 bits
— partial solution with saturation arithmetic
> (rounding) 16 bits * 16 bits= 32 bits
— this is hidden with FP, but it can also hurt there!

Saturation arithmetic

» blue — original
» red — 2's complement wrapped at 8 bits
> green — 2’s complement saturated at 8 bits

2007

SINMNM AN
| / L\

-200 : ‘ :
100 200 300 400 500

Find the error power in both modes.

Dynamic range

» Strongest signal: “rail to rail” (magnitude: 2V=1)

» Weakest signal: “one LSB” (magnitude: 1)

» Noise may hide the weak signal

Noise (at the output) may come also from rounding inside the system.

Z-1

71

7-1

by

@

Resonance behavior

Maximum of y(n) = x(n) +0.9y(n—1) ?
Let y(n) = y(n—1) =1 Then x(n) = 0.1 — amplified 10x!

x(n) @

L

a | delay

What happens if you scale it down?

Serial I/0

Galvanic isolation:

(B) Vopz

—(7) GND,

Voo1 (1

V
(DATA IN]I (2

v
Voot (3 1 ?_@ (DATA OUT)

GND, (1) (5) GND,
ADuM1100

mooOZm

;‘ mooomoQo |

Implementation tricks

>
>
>
>

Multiplication by 2V — by shift or add
Save on storage — inverted |IR structure
Cascade biquads

Use CIC filters

x[n] @

29‘(2[7)

Implementation tricks — speed

z-1

z-1

z-1

NN N
()

Cascaded adders — long propagation time

;

Digital Signal Processors (DSP)

>
>

vVvyVvVvVVYyyypy

Specialization for scalar product (and FFT)
Single-cycle processing (memory throughput):

> parallelism (pipelining)

» Harvard architecture (program (P), data (X), data (Y) memories)
Desing for embedding — I/O & host interfaces etc.
Special arithmetic modes: rounding, saturation
ALU in fraction mode
ALU overflow space
butterfly implementation (+ and -)

Special addressing modes:

> circular buffer,

> bit-reversal,

> matrix address
Hardware speedups

» Hardware loop
Hardware stack
Fast interrupts
Single-cycle instructions
RISC..

vV vyVvVvYy

Instruction pipeline

PARALLEL PROCESSING OF INSTRUCTIONS

SERIAL EXECUTION OF INSTRUCTIONS

Inawucton/Data Fech

Ingtruction D ecode

Ins ¥ uction Execution

Inswruction Gycle 1 | Instruction Cyde 2 Instuction Cycle 3 Instruction Cyde Instruction Cyde 5
WeTRUCTIoN| | [MeTRUcTIoN] [INSTRUCTION| [INSTRUCTION| [INSTRUCTION
FETCH | FETGH FETCH FETCH FETCH
c LOGIC 5 LOGIG LOGIC LOGIC

INSTRUCTION| [INSTRUCTION| [mMeTRUCTION| [IMSTRUGTION
DECODE DECODE DECODE DECODE

LOGIG LOGIC » LOGIC 4 LOGIC 4

MSTRUCTION| [IMSTRUCTION |y armnTion

EXECUTION EXECUTION EXEGUTION

LOGIC LOGIC » LOGIC 3

Manufacturers

v

Texas Instruments (TMS family)

» From simple to multiprocessor
» fixed point and floating point

Analog Devices (ADSP family, codename “SHARC” etc.)
Motorola — now Freescale Semiconductors (DSP56K family)
vector units of general-purpose uP

graphic processors: IBM Cell BE, Nvidia CUDA

Also “DSP cores” - VHDL or silicon IP blocks to be embedded into VLSIs.

vV v v v

TS benchmarks

TigerSHARC Processor Benchmarks

Peak Rates at 800 Mz

- 1-bit Performance

153.6 Billion complex MACs/second

16-bit Performance
32-bit Fixed-Point
Performance

4.8 Billion MACs/second
1.2 Billion MACs/second

: Performance

3.6 Billion Floating Point
(GFLOPS) i

| 16-Bit Fixed Point Algorithms

Execution Time

Clock Cycles

at 800 MHz
Point Complex FFT (Radix 2} 1.55 s 928

FIR Filter (per tap) 0.21ns 0.125
'éamﬁlex FiR (pér tap) 0.83ns 05
| 328 Floating Point gosicls g_“f;“e Ciock Cycles

1024 Point Complex FFT (Radix 2) 16777 ps 100617
:[8 x 8] x [8 x 8] Matrix Multiply 2.33 us 1399
FIR Filter (per tap) 0.83ns 05
Complex FIR (per tap) 3.33ns 2

e AT A RIS, TRUT UTTTY LIUUR SPTTU afiU GYUIS e,

Speedups

» SIMD mode: the same operation on different data (e.g. different rows of a matrix): multiple
ALU’s

» Multiprocessing (with separate RAMs)
» DMA I/O

Alternatives: GPGPU

» massive multicore, massive pipelining, SIMT

» stream processing: applying the same operation (“kernel”) to each element of the stream of
data (vector element or vector fragment)
afor (i=0;1i++;i<N) loop where each i-th loop content is executed in parallel

» linear algebra libraries (CUBLAS)

Main usage: speeding up offline calculations, simulations etc., with main () running on a PC
For realtime work in embedded environment — DSP or FPGA is more predictable!

GPU CUDA

Main
Memory 1

CPU

Copy processing datal

Copy the result
Memory

for GPU

GPU
(GeForce 8800)

Processing flow

on CUDA

[NEN
BT

[NN
_ HEEE

Instruct the processing

2

Execute parallel
in_each core

3

-
_

D

GPU CUDA

Technical Specifications

Product Tesla S107T0

of Tesla Processors 4

of Computing Cores 960 (240 per processor)

Fleating Point Precision |IEEE 754 single & double

Total Dedicated Memory 16 GB (crganized as 4.0 GB per GPU)

4x 512-bit GDDOR3 memory interface (organized as a 512-bit

Memory Interface interface per GPU)

Memory Bandwidth 408 GB/sec (102 GB/s per GPU to local memory)
Typical Power Consumption T00W
System Interface PCle x16 or x8

Programming environment CUDA

GPU CUDA

FPGA

Field Programmable Gate Array

» an array of logic blocks (simple or complex)
configuration and connections stored in RAM (sometimes ROM)
Additionaly — specialized processing blocks (e.g. 48-bit ALU)
Sometimes — an option to convert to mask-programmable version
Complexity from thousands to millions of gates

vV v.v v .Yy

Cost from few $ to few k$

FPGA

88 99 80 49

89 60 68 65—

Configurable

/ Logic Blocks

loB}— connection lines
o8]
(I B

Switch Matrix

FPGA — DSP48E1

B
A
25x18
D A Multiplier
Pre-adder
C

-

48-Bit Accumulator/Logic Unit

Pattern Detector

UG479_c1_21_032111

FPGA — programming

FPGA programming

» graphical (draw the schematic)

» VHDL (usually it is an intermediate form)

Xilinx Compiler

BitFile
Generation
Complete

u]
|
I

n

DA

FPGA — environment

boot
ROM

A/D

USB/PCI/Eth

PC

D/A

Signal processing with an FPGA

Signal processing with an FPGA — DSP48

x(n)

FPGA — detailed programming of DSP48

Configure DSP48E

L DRSS

Function | Pattem Detect | Registers | Temminals | Fixed-Point Configuration | Enable | Reset | VHDLinstantiation |

Configure for Arithmetic [=]

Arithmetic z
p=(+ [c

Logic unit mode:
One 48-Bit [=]

=+ [=]as

Arithmetic sy

Arithmetic caryin

[=] + camyin

=]

alumode register

opmode register

P registers

11

—1 x
= si240] H }%
3] m register ‘ |,
aregister] 2 register2 | e
ab (45 z Logic unit {
c register
g Mux patten [TP8
censtant Ly
b | L . P
- mask
bregister] b register2 ! constant pregisters | L HD
multearyin register 1T
Ste
carryinsel register MUK P registers
carryin register
Arithmetic x+y is dependent on Arithmetic z, and Arithmetic carryin is dependent on both Arithmetic z and Arithmetic x+y. Configure Arfthmetic zfirst, then B
Arithmetic x+y and then Arithmetic carryin.
ok | [concel | [Hep

