
EDISP (NWL2)
(English) Digital Signal Processing

Implementing signal processing

December 7, 2016

Scalar product

a ·b = 〈a,b〉=
n

∑
i=1

aibi = a1b1 +a2b2 + · · ·+anbn

I Convolution
I FIR filter (direct)
I IIR filter (direct - use for low orders only!!)

w(n) = x(n)−〈a[k],w [n− k]〉

y(n) = b0w(n)+ 〈b[k],w [n− k]〉
I matrix multiply y = a×b −→ ykm = 〈ak ,:,b:,m〉
I We need to repeat (length times)

I fetch a
I fetch b
I multiply and accumulate

I Do it in parallel or sequentially?

Arithmetics
I Floating point problems:

I Speed
I Conversion from A/D native format

I Fixed point problems:
I (overflows) 16 bits + 16 bits= 17 bits

−→ partial solution with saturation arithmetic
I (rounding) 16 bits * 16 bits= 32 bits

−→ this is hidden with FP, but it can also hurt there!

Saturation arithmetic
I blue – original
I red – 2’s complement wrapped at 8 bits
I green – 2’s complement saturated at 8 bits

Find the error power in both modes.

Dynamic range

I Strongest signal: “rail to rail” (magnitude: 2N−1)
I Weakest signal: “one LSB” (magnitude: 1)
I Noise may hide the weak signal

Noise (at the output) may come also from rounding inside the system.

Resonance behavior

Maximum of y(n) = x(n)+0.9y(n−1) ?
Let y(n) = y(n−1) = 1 Then x(n) = 0.1 −→ amplified 10x!

delay
���

HHH
a

��
��
+

y(n)x(n)

What happens if you scale it down?

Serial I/O

Galvanic isolation:

Implementation tricks
I Multiplication by 2N – by shift or add
I Save on storage – inverted IIR structure
I Cascade biquads
I Use CIC filters

z−1

z−1

2ℜ(zb)
−2ℜ(zz)

|zz |2−|zb|2

x[n] y [n]

Figure: Inverted IIR biquad structure

Implementation tricks – speed

Cascaded adders – long propagation time

Digital Signal Processors (DSP)
I Specialization for scalar product (and FFT)
I Single-cycle processing (memory throughput):

I parallelism (pipelining)
I Harvard architecture (program (P), data (X), data (Y) memories)

I Desing for embedding – I/O & host interfaces etc.
I Special arithmetic modes: rounding, saturation
I ALU in fraction mode
I ALU overflow space
I butterfly implementation (+ and -)
I Special addressing modes:

I circular buffer,
I bit-reversal,
I matrix address

I Hardware speedups
I Hardware loop
I Hardware stack
I Fast interrupts
I Single-cycle instructions
I RISC..

Instruction pipeline

Manufacturers

I Texas Instruments (TMS family)
I From simple to multiprocessor
I fixed point and floating point

I Analog Devices (ADSP family, codename “SHARC” etc.)
I Motorola −→ now Freescale Semiconductors (DSP56K family)
I vector units of general-purpose µP
I graphic processors: IBM Cell BE, Nvidia CUDA

Also “DSP cores” - VHDL or silicon IP blocks to be embedded into VLSIs.

TS benchmarks

Speedups

I SIMD mode: the same operation on different data (e.g. different rows of a matrix): multiple
ALU’s

I Multiprocessing (with separate RAMs)
I DMA I/O

Alternatives: GPGPU

I massive multicore, massive pipelining, SIMT
I stream processing: applying the same operation (“kernel”) to each element of the stream of

data (vector element or vector fragment)
a for (i=0;i++;i<N) loop where each i-th loop content is executed in parallel

I linear algebra libraries (CUBLAS)

Main usage: speeding up offline calculations, simulations etc., with main() running on a PC
For realtime work in embedded environment – DSP or FPGA is more predictable!

GPU CUDA

GPU CUDA

GPU CUDA

FPGA

Field Programmable Gate Array
I an array of logic blocks (simple or complex)
I configuration and connections stored in RAM (sometimes ROM)
I Additionaly – specialized processing blocks (e.g. 48-bit ALU)
I Sometimes – an option to convert to mask-programmable version
I Complexity from thousands to millions of gates
I Cost from few $ to few k$

FPGA

FPGA – DSP48E1

FPGA – programming

FPGA programming
I graphical (draw the schematic)
I VHDL (usually it is an intermediate form)

FPGA – environment

Signal processing with an FPGA

Signal processing with an FPGA – DSP48

FPGA – detailed programming of DSP48

