EDISP (LTIlect)
 (English) Digital Signal Processing
 DT systems, LTI

November 26, 2015

DT systems

A DT system: an operator mapping an input sequence $x[n]$ into an output sequence $y[n]$.

$$
y[n]=T\{x[n]\}
$$

\longrightarrow A rule (formula) for computing $y(n)$ from $x(n)$

Implementations:

- PC program
- matlab m-file
- custom VLSI or FPGA
- programmable digital signal processor

Examples:

$$
\begin{gathered}
y(n)=3 \cdot x(n) \\
y(n)=\frac{x(n)+x(n-1)}{2} \\
y(n)=\frac{1}{M} \sum_{k=0}^{M-1} x(n-k) \\
y(n)=\sum_{k=-\infty}^{\infty} h(k) \cdot x(n-k) \\
y(n)=x(n)^{2}
\end{gathered}
$$

Linear \& time-invariant DT systems

Linearity property

$$
T\left\{\alpha_{1} x_{1}[n]+\alpha_{2} x_{2}[n]\right\}=\alpha_{1} T\left\{x_{1}[n]\right\}+\alpha_{2} T\left\{x_{2}[n]\right\}
$$

in other words:
if
$x_{1}[n]$
$x_{2}[n]$$\quad \longrightarrow \quad y_{1}[n] ~ 子$
then
$\alpha x_{1}[n] \quad \longrightarrow \alpha y_{1}[n] \quad$ (scaling, homogeneity)
$x_{1}[n]+x_{2}[n] \quad \longrightarrow \quad y_{1}[n]+y_{2}[n] \quad$ (additivity)
Time invariance (shift invariance)
If

$$
T\{x[n]\}=y[n]
$$

then

$$
\forall n_{0}, \quad T\left\{x\left[n-n_{0}\right]\right\}=y\left[n-n_{0}\right]
$$

Shift does not modify result \leftrightarrow System properties do not change

Linear systems - examples

- $y(n)=3 \cdot x(n)$ - is linear; it is also memoryless
- $y(n)=\frac{x(n)+x(n-1)}{2}$ (not memoryless):

$$
\begin{aligned}
& T\left\{\alpha_{1} x_{1}(n)+\alpha_{2} x_{2}(n)\right\}= \frac{\left[\alpha_{1} x_{1}(n)+\alpha_{2} x_{2}(n)\right]+\left[\alpha_{1} x_{1}(n-1)+\alpha_{2} x_{2}(n-1)\right]}{2}= \\
&= \frac{\alpha_{1} x_{1}(n)+\alpha_{1} x_{1}(n-1)}{2}+\frac{\alpha_{2} x_{2}(n)+\alpha_{2} x_{2}(n-1)}{2}= \\
&=\alpha_{1} \frac{x_{1}(n)+x_{1}(n-1)}{2}+\alpha_{2} \frac{x_{2}(n)+x_{2}(n-1)}{2}= \\
&=\alpha_{1} y_{1}(n)+\alpha_{2} y_{2}(n) \text { cnd }
\end{aligned}
$$

not L$) y(n)=(x(n))^{2}$ because

$$
T\left\{x_{1}(n)+x_{2}(n)\right\}=\left(x_{1}(n)+x_{2}(n)\right)^{2}=\left(x_{1}(n)\right)^{2}+\left(x_{2}(n)\right)^{2}+\left[2 \cdot x_{1}(n) x_{2}(n)\right]
$$

shift example

Input signals $x[n-k]$.

Responses $T\{x[n-k]\}$ of Tl system $T\{$.

Other properties: causality, stability

causality

$\longrightarrow y\left(n_{0}\right)$ depends only on $x(n), n \leq n_{0}$ (important in real-time implementations, unimportant for off-line processing)

Other properties: causality, stability

stability

\longrightarrow bounded input causes bounded output [BIBO]
bounded $\longrightarrow \exists B_{x}: \forall n|x(n)| \leq B_{x}<\infty$

Examples

Decimator (compressor)

$$
y(n)=x(M n)
$$

$\longrightarrow \mathrm{L}$, but not TI (prove it.)
1-st order difference
forward: $y(n)=x(n+1)-x(n) \longrightarrow$ noncausal backward: $y(n)=x(n)-x(n-1) \longrightarrow$ causal

Accumulator

$$
y(n)=\sum_{k=-\infty}^{n} x(k)
$$

\longrightarrow unstable; (hint: feed it with $u[n]$)

LTI systems: impulse response

$h[n]=T\{\delta[n]\} \longrightarrow$ impulse response of $T\{$.
$h[n]$ characterizes completely system $T\{$.$\} - we may compute its response for any$ input $x[n]$.

- Decompose $x[n]$ into weighted sum of impulses $\delta[n-k]$

$$
x[n]=\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]
$$

- Superpose responses (use LTI properties)

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

\longrightarrow this is a convolution sum

Convolution example

1	$1 \mid-1$
2	
3	
-1	

Convolution example

Convolution example

Convolution example

Convolution example

Convolution properties

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

we denote as

$$
y[n]=x[n] * h[n]
$$

Properties of "*"

"*" is commutative: $x[n] * h[n]=h[n] * x[n]$
"*" distributes over addition $x[n] *\left(h_{1}[n]+h_{2}[n]\right)=x[n] * h_{1}[n]+x[n] *\left(h_{2}[n]\right)$
\longrightarrow Convolution of a signal $x[n]$ with given fixed $h[n]$ is linear!
System and $h[n]$

- causality $\Leftrightarrow h[n]=0, \quad n<0$. A hint: $y(n)=\sum_{k=-\infty}^{\infty} h(k) x(n-k)$
- stability $\Leftrightarrow S=\sum_{k=-\infty}^{\infty}|h(k)|<\infty$

Linear difference equations

... describe an important class of LTI systems.

$$
\sum_{k=0}^{N} a_{k} y(n-k)=\sum_{k=0}^{M} b_{k} x(n-k), \quad a_{0}=1 \text { (traditionally) }
$$

or

$$
\begin{gathered}
y(n) \quad=\quad-a_{1} \cdot y(n-1)-a_{2} \cdot y(n-2)-\ldots-a_{n} \cdot y(n-N)+ \\
+b_{0} \cdot x(n) \quad+b_{1} \cdot x(n-1)+b_{2} \cdot x(n-2)+\ldots+b_{n} \cdot x(n-M)
\end{gathered}
$$

Note: if, for a given input $x_{p}[n]$, an output sequence $y_{p}[n]$ satisfies given difference equation,

$$
y[n]=y_{p}[n]+y_{h}[n]
$$

will also satisfy the equation, if $y_{h}[n]$ is a solution to $\sum_{k=0}^{N} a_{k} y(n-k)=0$ (homogenous equation).

Difference equation - example

An equation: $y(n)=a \cdot y(n-1)+x(n)$ with input

$$
\begin{aligned}
& x(n)=0, n<0 \\
& x(n) \neq 0, n>0 .
\end{aligned}
$$

$$
\begin{array}{rlrl}
y(0) & =a \cdot y(-1)+x(0) & \\
y(1) & =a \cdot y(0)+x(1) & \text { Initial condition: } y(-1)=\alpha \\
y(2) & =a \cdot y(1)+x(2) & \text { Let } x[n] & =\delta[n] \\
& \ldots & y(0) & =a \cdot \alpha+1 \\
& & y(1) & =a(a \cdot \alpha+1)=a^{2} \alpha+a \\
& y(2) & =a^{3} \alpha+a^{2} \\
& & \cdots
\end{array}
$$

Difference equation - impulse response (example continued

$y(n)=a \cdot y(n-1)+x(n)$
Initial condition: $y(-1)=\alpha$
$x[n]=\delta[n]$
Solution: $y(n)=a^{n+1} \alpha+a^{n}$

Find a homogenous part!
Stability:

$$
\begin{aligned}
1<a: \quad & a^{n} \rightarrow \infty \\
0<a<1: & a^{n} \rightarrow 0 \\
-1<a<0: & a^{n} \rightarrow 0 \\
& a<-1: \quad a^{n} \rightarrow ? ? ?
\end{aligned}
$$

Z-transform - what and why

- DTFT - a transform based on periodic decomposition (basis: $\mathrm{e}^{\mathrm{j} n \theta}$ sequences)
- responses of most LTI systems - made of short sequences (FIR) and decaying complex exponentials $r^{n} \mathrm{e}^{\text {jn } \theta}$ (IIR)
- $r^{n} \mathrm{e}^{\mathrm{j} \eta \theta}=\left(r \mathrm{e}^{\mathrm{j} \theta}\right)^{n}=z^{n}$ can be a good basis

Z-transform is a tool for analyzing transient signals, such as an impulse response of a system.

Z-transform definition

Z - a generalization of DTFT, similar to \mathcal{L} as a generalization of CTFT

$$
x(z)=\sum_{n=-\infty}^{\infty} x(n) z^{-n}
$$

\longrightarrow DTFT is equal to $X(z)$ at unit circle $z=e^{j \theta}$
Convergence: same as for DTFT of $x[n] \cdot r^{-n}$ (substitute $\left.z=r \cdot \mathrm{e}^{\mathrm{e} \theta}\right)$

$$
\sum_{n=-\infty}^{\infty}\left|x(n) r^{-n}\right|<\infty
$$

example: $u[n]$ is not absolutely summable; $u(n) \cdot r^{-n}$ can be, if $\left|r^{-1}\right|<1$ $\longrightarrow Z(u[n])$ is convergent for $r>1$.

Properties:

- Linearity (each student will recite the formula at 4 a.m.),
- shift $x\left(n-n_{0}\right) \stackrel{z}{\longleftrightarrow} z^{-n_{0}} \cdot X(z)$,
- multiplication $z_{0}^{n} \cdot x(n) \stackrel{z}{\longleftrightarrow} X\left(z / z_{0}\right)$,
- transform differentiation $n x(n) \stackrel{z}{\longleftrightarrow}-z d X(z) / d z$,
- conjugation $x^{*}(n) \stackrel{z}{\longleftrightarrow} X^{*}\left(z^{*}\right)$,
- time reversal $x(-n) \stackrel{z}{\longleftrightarrow} X(1 / z)$,
- initial value $x(0)=\lim _{z \rightarrow \infty} X(z)$ if $x(n)=0$ for $n<0$ (hint: limit of each term ...)
- multiplication $x_{1}(n) \cdot x_{2}(n) \stackrel{z}{\longleftrightarrow} 1 /(2 \pi j) \oint_{C} X_{1}(v) X_{2}(z / v) v^{-1} d v$ complex! convolution

What happens to ROC with above transformations?

Examples

- $x(n)=a^{n} u(n)$ (causal)

$$
X(z)=\sum_{n=-\infty}^{\infty} a^{n} u(n) z^{-n}=\sum_{n=0}^{\infty}\left(a z^{-1}\right)^{n}=\frac{1}{1-a z^{-1}}=\frac{z}{z-a}, \quad|z|>|a|
$$

- $x(n)=-a^{n} u(-n-1)$ (non-causal)

$$
x(z)=-\sum_{n=-\infty}^{-1}\left(a z^{-1}\right)^{n}=1-\sum_{n=0}^{\infty}\left(a^{-1} z\right)^{n}=\frac{1}{1-a z^{-1}}=\frac{z}{z-a}, \quad|z|<|a|
$$

- $x(n)=\left\{\begin{array}{cc}a^{n} & n=0,1, \ldots, N-1 \\ 0 & \text { otherwise }\end{array}\right.$ (finite)

$$
X(z)=\sum_{n=0}^{N-1} a^{n} z^{-n}=\sum_{n=0}^{N-1}\left(a z^{-1}\right)^{n}=\frac{1-\left(a z^{-1}\right)^{N}}{1-\left(a z^{-1}\right)}=\frac{1}{z^{(N-1)}} \frac{z^{N}-a^{N}}{z-a}
$$

Z-transform pairs

Remember about ROC (Region of Convergence):

- causal signal (non-zero only when $n \geq 0$) - outside unit circle
- anticausal signal (non-zero only when $n \leq 0$) - inside unit circle

In the table only causal prototypes are shown.

$\delta(n)$	-1	
$u(n)$	$-\frac{1}{1-z^{-1}}$	
$a^{n} u(n)$	$-\frac{1}{1-a z^{-1}}$	
$n \cdot a^{n} u(n)$	-	$\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$

Inverse Z - transform

$$
x(n)=\frac{1}{2 \pi j} \oint_{C} X(z) z^{n-1} d z
$$

- Power series expansion (e.g for finite series) \longrightarrow "a series of deltas"
- Partial fraction expansion: $X(z)$ a rational function with M zeros and N distinct poles $\longrightarrow X(z)=\operatorname{num}(z) / \operatorname{den}(z)=\operatorname{quot}(z)+\operatorname{rem}(z) / \operatorname{den}(z)$

$$
X(z)=\sum_{r=0}^{M-N} B_{r} \cdot z^{-r}+\sum_{k=1}^{N} \frac{A_{k}}{1-d_{k} z^{-1}}, \quad A_{k}=\left.\left(1-d_{k} z^{-1}\right) \cdot X(z)\right|_{z=d_{k}}
$$

Are we looking for a

- causal (or maybe only right-sided)
- anticausal (... left-sided)
- noncausal (...two-sided?)
solution?
Remark: these terms are overloaded - understand them as a short for "signal that may be an imp. response of a causal filter" etc.

$H(z)$ to $h(n)$ (or how to find Z^{-1})

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{\sum_{k=0}^{2} b_{k} z^{-k}}{\sum_{m=0}^{2} a_{m} z^{-m}}=A \frac{\prod_{k=0}^{2}\left(1-c_{k} z^{-1}\right)}{\prod_{m=0}^{2}\left(1-d_{m} z^{-1}\right)}
$$

Zeros at $z=c_{k} \longrightarrow\left(1-c_{k} z^{-1}\right)=\frac{z-c_{k}}{z-0}$ (plus pole at $\left.z=0\right)$.
Poles at $z=d_{m} \longrightarrow \frac{1}{\left(1-d_{m} z^{-1}\right)}=\frac{z-0}{z-d_{m}}$ (plus a zero at $z=0$).
Knowing poles \longrightarrow decompose into a polynomial + partial fractions:

$$
\begin{array}{ll}
H(z)=\sum_{r=0}^{M-N} B_{r} \cdot z^{-r} & +\sum_{m=1}^{N} \frac{A_{m}}{1-d_{m} z^{-1}} \\
h(n)=\sum_{r=0}^{M-N} B_{r} \cdot \delta(n-r) & +\sum_{m=1}^{N} A_{m} u(n)\left(d_{m}\right)^{n}
\end{array}
$$

So, two conjugate poles (at d_{m} and d_{m}^{*}) give a decaying cosine!

Z-transform of a convolution

$$
\begin{gathered}
y[n]=x[n] * h[n] \longrightarrow y(n)=\sum_{k=-\infty}^{+\infty} x(k) \cdot h(n-k) \\
Y(z)=\sum_{n=-\infty}^{+\infty}\left[\sum_{k=-\infty}^{+\infty} x(k) \cdot h(n-k)\right] z^{-n}= \\
=\sum_{k=-\infty}^{+\infty}\left[x(k) \sum_{n=-\infty}^{+\infty} h(n-k) z^{-n}\right]= \\
(\text { we substitute } m=n-k \text { so } n=k-m) \\
=\sum_{k=-\infty}^{+\infty}\left[x(k) \sum_{m=-\infty}^{+\infty} h(m) z^{-k-m}\right]= \\
=\sum_{k=-\infty}^{+\infty} x(k) z^{-k} \sum_{m=-\infty}^{+\infty} h(m) z^{-m} \\
Y(z)=X(z) \cdot H(z)
\end{gathered}
$$

And this is the main application of z-transform.

Z-transform and difference equations (1)

$$
\sum_{k=0}^{N} a_{k} y(n-k)=\sum_{k=0}^{M} b_{k} x(n-k)
$$

$a_{0}=1$ traditionally
Simpler case of $N=0$ (FIR, no recursion)

$$
\begin{aligned}
y(n) & =\sum_{k=0}^{M} b_{k} x(n-k) \\
Y(z) & =\sum_{k=0}^{M} b_{k} Z[x(n-k)]= \\
& =\sum_{k=0}^{M} b_{k} X(z) z^{-k}= \\
& =X(z) \cdot \sum_{k=0}^{M} b_{k} z^{-k}= \\
& =X(z) \cdot H(z)
\end{aligned}
$$

Z-transform and difference equations (2)

Now the general case:

$$
\begin{array}{r}
\sum_{k=0}^{N} a_{k} y(n-k)=\sum_{k=0}^{M} b_{k} x(n-k) \\
\sum_{k=0}^{N} a_{k} Y(z) z^{-k}=\sum_{k=0}^{M} b_{k} X(z) z^{-k} \\
Y(z) \sum_{k=0}^{N} a_{k} z^{-k}=X(z) \sum_{k=0}^{M} b_{k} z^{-k} \\
Y(z)=X(z) \cdot \frac{\sum_{k=0}^{M} b_{k} z^{-k}}{\sum_{k=0}^{N} a_{k} z^{-k}}
\end{array}
$$

Recall that the transform is linear, and time shift by k is represented by z^{-k} operator.

System and its difference equation

Difference equation and $H(z)$

z^{-1} - time shift (delay) operator

$$
\begin{gathered}
\sum_{m=0}^{2} a_{m} y(n-m)=\sum_{k=0}^{2} b_{k} x(n-k) \\
\sum_{m=0}^{2} a_{m} Y(z) z^{-m}=\sum_{k=0}^{2} b_{k} X(z) z^{-k} \\
Y(z) \sum_{m=0}^{2} a_{m} z^{-m}=X(z) \sum_{k=0}^{2} b_{k} z^{-k} \\
H(z)=\frac{Y(z)}{X(z)}=\frac{\sum_{k=0}^{2} b_{k} z^{-k}}{\sum_{m=0}^{2} a_{m} z^{-m}}
\end{gathered}
$$

System and its $H(z)$

$$
Y(z)=X(z)+b_{1} X(z) z^{-1}+b_{2} X(z) z^{-2}-a_{1} Y(z) z^{-1}-a_{2} Y
$$

$$
Y(z)+a_{1} Y(z) z^{-1}+a_{2} Y(z) z^{-2}=X(z)+b_{1} X(z) z^{-1}+b_{2} X(z) z^{-2}
$$

$$
\begin{gathered}
\sum_{m=0}^{2} a_{m} Y(z) z^{-m}=\sum_{k=0}^{2} b_{k} X(z) z^{-k} \\
H(z)=\frac{Y(z)}{X(z)}=\frac{\sum_{k=0}^{2} b_{k} z^{-k}}{\sum_{m=0}^{2} a_{m} z^{-m}}
\end{gathered}
$$

System defined by $H(z)+$ complex sinusoid

$$
\begin{aligned}
x(n)= & \mathrm{e}^{\mathrm{j} n \theta} \longrightarrow \mathrm{~h}(\mathrm{n}) \longrightarrow y(n)=? \\
y(n) & =\sum_{k} h(k) \cdot \mathrm{e}^{\mathrm{j}(n-k) \theta}= \\
& =\sum_{k} h(k) \cdot \mathrm{e}^{\mathrm{j}(-k) \theta} \cdot \mathrm{e}^{\mathrm{j} n \theta}= \\
& =\mathrm{e}^{\mathrm{j} n \theta} \sum_{k} h(k) \cdot \mathrm{e}^{\mathrm{j}(-k) \theta}= \\
& =\mathrm{e}^{\mathrm{j} n \theta} H\left(\mathrm{e}^{\mathrm{j} \theta}\right) \\
& H\left(\mathrm{e}^{\mathrm{j} \theta}\right)=A(\theta) \mathrm{e}^{\mathrm{j} \phi(\theta)}
\end{aligned}
$$

$A(\theta)$ - magnitude, $\phi(\theta)$ - phase of $H\left(\mathrm{e}^{\mathrm{j} \theta}\right)$ If $x(n)$ is periodic - we can decompose it into harmonics (linearity).

As you can see, when we deal with periodic signals, we use $H\left(\mathrm{e}^{\mathrm{j} \theta}\right)=\left.H(z)\right|_{z=\mathrm{e}^{\mathrm{j} \theta}}$

System defined by $H(z)+$ sine/cosine signal

We say $H(z)$ meaning "transfer function", but we immediatly substitute $z=\mathrm{e}^{\mathrm{j} \theta} \ldots$.

$$
x(n)=\mathrm{e}^{\mathrm{j} n \theta} \longrightarrow \mathrm{~h}(\mathrm{n}) \longrightarrow y(n)=\mathrm{e}^{\mathrm{j} n \theta} H\left(\mathrm{e}^{\mathrm{j} \theta}\right)
$$

so if $x(n)=\cos (n \theta)=1 / 2 \cdot\left(\mathrm{e}^{\mathrm{j} n \theta}+\mathrm{e}^{-\mathrm{j} n \theta}\right)$
then $y(n)=1 / 2 \cdot\left(H\left(\mathrm{e}^{\mathrm{j} \theta}\right) \mathrm{e}^{\mathrm{j} n \theta}+H\left(\mathrm{e}^{-\mathrm{j} \theta}\right) \mathrm{e}^{-\mathrm{j} n \theta}\right)$

$$
H\left(\mathrm{e}^{\mathrm{j} \theta}\right)=A(\theta) \mathrm{e}^{\mathrm{j} \phi(\theta)}
$$

and $y(n)=A(\theta) \cdot 1 / 2 \cdot\left(\mathrm{e}^{\mathrm{j} n \theta} \cdot \mathrm{e}^{\mathrm{j} \phi(\theta)}+\mathrm{e}^{-\mathrm{j} n \theta} \cdot \mathrm{e}^{-\mathrm{j} \phi(\theta)}\right)$ (for a real $\mathrm{h}(\mathrm{n}) \phi(\theta)$ is odd: $\phi(-\theta)=-\phi(\theta)$)
and $y(n)=A(\theta) \cdot 1 / 2 \cdot\left(\mathrm{e}^{\mathrm{j}(n \theta+\phi(\theta))}+\mathrm{e}^{-\mathrm{j}(n \theta+\phi(\theta))}\right)$

$$
y(n)=A(\theta) \cdot \cos (n \theta+\phi(\theta))
$$

Repeat the same with $\sin () \longrightarrow$ at home.
Example: $x(n)=3+5 \sin (0.1 \pi n) \longrightarrow$ a DC component and a 0.1π sinusoidal signal. So $y(n)=A(0) \cdot 3+A(0.1 \pi) \cdot 5 \sin (0.1 \pi n+\phi(0.1 \pi))$.
Note: With periodic signals use Fourier and NOT Z-transform !!!

