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Transform concept

We want to analyze the signal −→ represent it as “built of” some building blocks (well known
signals), possibly scaled

x[n] = ∑
k

Ak φk [n]

−→ Linear combination of φk [n] functions
I “forward transform” −→ For a given x[n] we want to find coefficients Ak

I “inverse transform” −→We know Ak , we reconstruct x[n]

I The number k of “blocks” φk [n] may be finite, infinite, or even a continuum (then ∑ −→
∫

)
I Scaling coefficients Ak are usually real or complex numbers
I φk are complex harmonics ejθk n or cosines or wavelets . . .



Transform concept

We want to analyze the signal −→ represent it as “built of” some building blocks (well known
signals), possibly scaled

x[n] = ∑
k

Ak φk [n]

−→ Linear combination of φk [n] functions
I If the representation by Ak (expansion) is unique for a class of functions, the set φk [n] is called a

basis for this class.
I The forward transform is mathematically a cast (projection) onto the basis φk , and it is

calculated with inner product, (a.k.a scalar product, dot product) of a signal with a dual basis φ̃k

functions

Ak =

〈
x[n], φ̃k [n]

〉〈
φ̃k [n], φ̃k [n]

〉
I for an orthogonal transform, φ̃k = φk ,
I only sometimes bases are normalized so the denominator

〈
φ̃k [n], φ̃k [n]

〉
= 1

In a Fourier transform, we take the basis representing different frequencies.



Side remark: orthogonal and non-orthogonal basis

This is why we like the orthogonal case . . .



Fourier spectrum (Fourier transform – FT) of a limited energy signal
... as we talk about DT signals, it is a DTFT

∞

∑
n=−∞

|x(n) |2 < ∞ ,(x[n] ∈ `2)

Fourier spectrum definition:

X(ejθ ) =
∞

∑
n=−∞

x(n)e−jnθ

X(ejθ ) – a continuous, periodic function.

x(n) =
1

2π

∫
π

−π

X(ejθ ) ejnθ dθ

−→ inverse transform

Linearity: ax[n] + by [n]
F←→ aX(ejθ) + bY (ejθ)

Time shift: x[n−n0]
F←→ e−jn0θX(ejθ),

Frequency shift: ejnθ0x[n]
F←→ X(ej(θ−θ0))

Convolution: x[n]∗ y [n]
F←→ X(ejθ) ·Y (ejθ),

Modulation: x[n] · y [n]
F←→ 1

2π

∫ 2π

0 X(ejφ) ·Y (ejθ−φ)dφ

(Parseval’s): E = ∑
∞
n=−∞ |x(n)|2 = 1

2π

∫
π

−π
|X(ejθ)|2dθ



A simple example
A very long piece of sinusoid: sin(θx n) for n ∈ 0, 1, . . . , N−1 (or 1/2je+jnθx −1/2je−jnθx )
Scalar product of 1/2je+jnθx with e−jnθ

I when θ = θx : ∑
N−1
n=0 1/2je0 = jN/2

I when θ 6= θx : ∑
N−1
n=0 1/2jejnθx−θ = . . . jN/2 times mean value of a complex sine −→ almost

zero

Similar for −θx , and we get two strong components in spectrum at ±θx (plus “almost zero” around –
for thorough analysis see next slide)



A full-fledged example
We sample xa(t) = rect( t−0.5

T ) with Ts = T/L

xa(t) =

{
1 for 0 ≤ t < T
0 for other t

x[n] =

{
1 for n = 0, 1, . . . , L − 1
0 for other n

Xa(ω) =
∫

∞

−∞
xa (t)e−jω t dt X(ejθ ) = ∑

∞
n=−∞ x(n)e−jnθ

Xa(ω) = T sin(ωT /2)
ωT /2 e−jωT/2 X (ejθ ) = e−j (L−1)θ/2 sin(Lθ/2)

sin(θ/2)

(hint:
(

ΣN−1
n=0 qn = (1 − qN)/(1 − q)

)
)

At home: Repeat calculations for xa = rect( t−0.5
T ) · cos(ωt); select ω such that an integer number

of periods fits in T .



Fourier transform of a periodic (limited mean power) signal

Limited mean power condition: 1
N ∑

N−1
n=0 |x(n) |2 < ∞

Periodicity with period N −→ no component that is nonperiodic or periodic with different period.
Conclusion: only N-periodic components (this includes N/k: N/2, N/3,. . . ) −→ ej2πnk/N

Fourier spectrum (forwar transform) definition:

X(k) =
N−1

∑
n=0

x(n)e−j2πkn/N ,

defined for −∞ < k < ∞

but periodic with period N
(e.g. 0 < k < N−1)

reconstruction −→ inverse transform

x(n) =
1
N

N−1

∑
k=0

X(k) ej2πkn/N

defined for −∞ < n < ∞

but periodic with period N
(e.g. 0 < n < N−1)

−→We represent x[n] as a sum of N complex cosines with angular frequencies
θk = 2π

N · k , k = 0, 1, . . . , N − 1



8 basis functions for N=8 (real part only)



Example

Discrete-time unipolar square wave:
xp[n] with period N = 10 has L = 5 nonzero samples (n = 0, 1, . . . L − 1) in each period

X(k) =
N−1

∑
n=0

xp(n)e−j 2πkn/N =
L−1

∑
n=0

e−j 2πkn/N = e−j(L−1)πk /N sin(Lπk /N)

sin(πk /N)
, k = 0, 1, . . .

The amplitude spectrum |X [k ]| =
∣∣∣ sin(Lθk /2 )

sin(θk /2)

∣∣∣ , θk = 2πk /N is shown



Discrete Fourier Transform (DFT)
It is discrete both ways - forward and inverse!

I A signal x[n] defined for −∞ < n < ∞

I Its spectrum X(ejθ) defined for continuous 0≤ θ < 2π

I Life is short . . .

−→ Let us take a fragment of x[n]: x0[n], n = 0, 1, . . . , N − 1

x0[n] = x[n]g[n], where g[n] =

{
1 for n = 0, 1, . . . , N − 1
0 for others n

g[n] – window (gate?) function (here: a rectangular window) (w[n] we reserve for white noise)
−→We take only N values of θk = 2π

N k , k = 0, 1, . . . , N − 1

X0

(
ejθk
)

=
N−1

∑
n=0

x0(n) e−jnθk =
N−1

∑
n=0

x0 (n)e−j2πn k /N



DFT properties
extras w.r.t. FT properties

Orthogonality of basis functions over N samples – (see next slide)
Periodicity As we sample the spectrum, the reconstructed signal is periodic with period N. If we
compute IDFT for −∞ < n < ∞ . . .

I A non-periodic signal was reconstructed as periodic
I A periodic signal was reconstructed as N-periodic



DFT as an orthogonal transform

An orthogonal transform (e.g. DFT) is a decomposition of a function (signal) on a set of orthogonal
basis functions φk [n].

x[n] =
1
N

N−1

∑
k=0

A(k) ·φk [n]

Because of φk [n] orthogonality, A(k) are easy to calculate:

A(k) =
N−1

∑
n=0

x(n) ·φ∗k (n)

Basis sequences (transform kernel) have to be orthogonal:

1
N

N−1

∑
k=0

φk (n) ·φ∗m(n) =

{
1 m = k
0 otherwise

Scalar product is zero = orthogonal!

DFT basis functions φk (n) = e−jnθk = e−j2πnk/N are orthogonal – we chose θk so that they be!



Inverse DFT
a nice math exercise

Take forward DFT definition as a linear equation set, with x0[n] as unknowns.

When we multiply both
sides by e j2π rk /N , r = 0, 1, . . . , N − 1 and sum for k = 0, 1, . . . , N − 1

N−1

∑
k =0

X0(k)

ej 2π rk /N

=

N−1

∑
k =0

[

N−1

∑
n=0

x0(n)e−j2πnk /N

]
e j2πrk /N =

=
N−1

∑
k =0

N−1

∑
n=0

x0(n)e j2πk(r−n)/N =
N−1

∑
n=0

x0(n)
N−1

∑
k =0

e j2πk (r−n)/N

Will we get x0(n)? Simple! Orthogonality of basis helps – the second sum is mainly 0:

N−1

∑
k =0

e j2πk (r−n)/N =

{
N, r = n
0, r 6= n

⇒
N−1

∑
k =0

X0(k)e j2πr k /N = N x0(r), r = 0, 1, . . . , N − 1

x0(n) =
1
N

N−1

∑
k =0

X0 (k)e j2πnk /N , n = 0, 1, . . . , N − 1

So IDFT is almost the same as DFT – remove minus and scale by 1/N.
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Forward and Inverse DFT - transformation matrix
x and F (x) are sets of N numbers – i.e. vectors in N-dimensional space.

F (x) = F · x
F−1 ·F (x) = F−1 ·F · x
F−1 ·F (x) = x

algebraic trivia:
How to construct F matrix? Fkn = e−j2πnk/N

What is F−1? (not-so-trivial, but see IDFT slide)
Note nice properties of F matrix...

Entertainment maths
When we define F as mathematicians like it – with factor of 1/

√
N at both forward and inverse

transform, then:
I F (F (x)) gives x(−n)

I F (F (F (F (x)))) gives again x
I F (F (F (x))) gives F −1(x)

The same happens with F matrix, of course.



Simple DFT matrices

I N = 1 . . .

I N = 2 −→
[

1 1
1 −1

]

I N = 4 −→


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i


If you remember this, you may implement DFT with order 1, 2 or 3 without any multiplication (with
pencil and paper or with a digital circuit).



Problems to be studied

What happens to the spectrum (and DFT) when
I Signal is inverted in time x1(n) = x(−n)

I Signal is upsampled by factor of two x1(2n) = x(n); x1(2n + 1) = 0 (or three, or more)
I Signal is extended with zeros (zero-padded) to a double/triple/. . . length
I Signal is decimated (downsampled) x1(n) = x(2n); odd samples x(2n + 1) are discarded
I Signal is modulated with (−1)n, with a complex cosine ejθ0n, real cosine cos(θ0n) or real sine

. . .

Decimation
When Roman soldiers ran away chased by Spartakus, Marcus Licinius Krassus ordered to kill one
out of each ten – deci – of them. The morale has risen, and next time they were more eager to be
killed in the battlefield. In three years, they defeated Spartakus at the Silarus river.

The decimation factor (defined as Noriginal/Nleft ) was 10/9 in that case – in signal practice the factor
is usually 2, 4, or even 2K


