EDISP (NWL2)
 (English) Digital Signal Processing
 Transform, FT, DFT

March 1, 2017

Transform concept

We want to analyze the signal \longrightarrow represent it as "built of" some building blocks (well known signals), possibly scaled

$$
x[n]=\sum_{k} A_{k} \phi_{k}[n]
$$

\longrightarrow Linear combination of $\phi_{k}[n]$ functions

- "forward transform" \longrightarrow For a given $x[n]$ we want to find coefficients A_{k}
- "inverse transform" \longrightarrow We know A_{k}, we reconstruct $x[n]$
- The number k of "blocks" $\phi_{k}[n]$ may be finite, infinite, or even a continuum (then $\Sigma \longrightarrow \int$)
- Scaling coefficients A_{k} are usually real or complex numbers
- ϕ_{k} are complex harmonics $e^{j \theta_{k} n}$ or cosines or wavelets ...

Transform concept

We want to analyze the signal \longrightarrow represent it as "built of" some building blocks (well known signals), possibly scaled

$$
x[n]=\sum_{k} A_{k} \phi_{k}[n]
$$

\longrightarrow Linear combination of $\phi_{k}[n]$ functions

- If the representation by A_{k} (expansion) is unique for a class of functions, the set $\phi_{k}[n]$ is called a basis for this class.
- The forward transform is mathematically a cast (projection) onto the basis ϕ_{k}, and it is calculated with inner product, (a.k.a scalar product, dot product) of a signal with a dual basis $\tilde{\phi}_{k}$ functions

$$
A_{k}=\frac{\left\langle x[n], \tilde{\phi}_{k}[n]\right\rangle}{\left\langle\tilde{\phi}_{k}[n], \tilde{\phi}_{k}[n]\right\rangle}
$$

- for an orthogonal transform, $\tilde{\phi}_{k}=\phi_{k}$,
- only sometimes bases are normalized so the denominator $\left\langle\tilde{\phi}_{k}[n], \tilde{\phi}_{k}[n]\right\rangle=1$

In a Fourier transform, we take the basis representing different frequencies.

Side remark: orthogonal and non-orthogonal basis

This is why we like the orthogonal case ...

Fourier spectrum (Fourier transform - FT) of a limited energy signal

.. as we talk about DT signals, it is a DTFT

$$
\sum_{n=-\infty}^{\infty}|x(n)|^{2}<\infty \quad,\left(x[n] \in \ell^{2}\right) \quad X\left(e^{j \theta}\right)-\text { a continuous, periodic function. }
$$

Fourier spectrum definition:

$$
x(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \theta}\right) e^{j n \theta} d \theta
$$

$$
X\left(e^{j \theta}\right)=\sum_{n=-\infty}^{\infty} x(n) e^{-j n \theta} \quad \longrightarrow \text { inverse transform }
$$

Linearity: $\quad a x[n]+b y[n] \stackrel{\mathcal{F}}{\longleftrightarrow} a X\left(e^{j \theta}\right)+b Y\left(e^{j \theta}\right)$
Time shift: $\quad x\left[n-n_{0}\right] \stackrel{\mathcal{F}}{\longleftrightarrow} e^{-j n_{0} \theta} X\left(e^{j \theta}\right)$,
Frequency shift: $e^{j n \theta_{0}} x[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X\left(e^{j\left(\theta-\theta_{0}\right)}\right)$
Convolution: $\quad x[n] * y[n] \stackrel{\mathcal{F}}{\longleftrightarrow} X\left(e^{j \theta}\right) \cdot Y\left(e^{j \theta}\right)$,
Modulation: $\quad x[n] \cdot y[n] \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{2 \pi} \int_{0}^{2 \pi} X\left(e^{j \phi}\right) \cdot Y\left(e^{j \theta-\phi}\right) d \phi$
(Parseval's): $\quad E=\sum_{n=-\infty}^{\infty}|x(n)|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|X\left(e^{j \theta}\right)\right|^{2} d \theta$

A simple example

A very long piece of sinusoid: $\sin \left(\theta_{x} n\right)$ for $n \in 0,1, \ldots, N-1$ (or $1 / 2 j e^{+j n \theta_{x}}-1 / 2 j e^{-j n \theta_{x}}$)
Scalar product of $1 / 2 j e^{+j n \theta_{x}}$ with $e^{-j n \theta}$

- when $\theta=\theta_{x}: \sum_{n=0}^{N-1} 1 / 2 j e^{0}=j N / 2$
- when $\theta \neq \theta_{x}: \sum_{n=0}^{N-1} 1 / 2 j e^{j \theta_{x}-\theta}=\ldots j N / 2$ times mean value of a complex sine \longrightarrow almost zero
Similar for $-\theta_{x}$, and we get two strong components in spectrum at $\pm \theta_{x}$ (plus "almost zero" around for thorough analysis see next slide)

A full-fledged example

We sample $x_{a}(t)=\operatorname{rect}\left(\frac{t-0.5}{T}\right)$ with $T_{s}=T / L$

$$
\begin{aligned}
& x_{a}(t)=\left\{\begin{array}{ccc}
1 & \text { for } 0 \leq t<T \\
0 & \text { for } & \text { other } t
\end{array}\right. \\
& x[n]=\left\{\begin{array}{cc}
1 & \text { for } n=0,1, \ldots, L-1 \\
0 & \text { for }
\end{array}\right. \\
& x_{a}(\omega)=\int_{-\infty}^{\infty} x_{a}(t) e^{-j \omega t} d t
\end{aligned} x\left(e^{j \theta}\right)=\sum_{n=-\infty}^{\infty} x(n) e^{-j n \theta} .
$$

$$
X_{a}(\omega)=T \frac{\sin (\omega T / 2)}{\omega T / 2} e^{-j \omega T / 2} \quad X\left(e^{j \theta}\right)=e^{-j(L-1) \theta / 2} \frac{\sin (L \theta / 2)}{\sin (\theta / 2)}
$$

$$
\text { (hint: } \left.\left(\sum_{n=0}^{N-1} q^{n}=\left(1-q^{N}\right) /(1-q)\right)\right)
$$

At home: Repeat calculations for $x_{a}=\operatorname{rect}\left(\frac{t-0.5}{T}\right) \cdot \cos (\omega t)$; select ω such that an integer number of periods fits in T.

Fourier transform of a periodic (limited mean power) signal

Limited mean power condition: $\frac{1}{N} \sum_{n=0}^{N-1}|x(n)|^{2}<\infty$
Periodicity with period $\mathrm{N} \longrightarrow$ no component that is nonperiodic or periodic with different period.
Conclusion: only N-periodic components (this includes $N / k: N / 2, N / 3, \ldots$) $\longrightarrow e^{j 2 \pi n k / N}$

Fourier spectrum (forwar transform) definition:

$$
X(k)=\sum_{n=0}^{N-1} x(n) e^{-j 2 \pi k n / N}
$$

defined for $-\infty<k<\infty$
but periodic with period N
(e.g. $0<k<N-1$)
reconstruction \longrightarrow inverse transform

$$
x(n)=\frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j 2 \pi k n / N}
$$

defined for $-\infty<n<\infty$
but periodic with period N
(e.g. $0<n<N-1$)
\longrightarrow We represent $x[n]$ as a sum of N complex cosines with angular frequencies
$\theta_{k}=\frac{2 \pi}{N} \cdot k, \quad k=0,1, \ldots, N-1$

8 basis functions for $\mathrm{N}=8$ (real part only)

Example

Discrete-time unipolar square wave:
$x_{p}[n]$ with period $N=10$ has $L=5$ nonzero samples $(n=0,1, \ldots L-1)$ in each period

$$
X(k)=\sum_{n=0}^{N-1} x_{p}(n) \mathrm{e}^{-\mathrm{j} 2 \pi k n / N}=\sum_{n=0}^{L-1} \mathrm{e}^{-\mathrm{j} 2 \pi k n / N}=\mathrm{e}^{-\mathrm{j}(L-1) \pi k / N} \frac{\sin (L \pi k / N)}{\sin (\pi k / N)}, \quad k=0,1, \ldots
$$

The amplitude spectrum $|X[k]|=\left|\frac{\sin \left(L \theta_{k / 2}\right)}{\sin \left(\theta_{k / 2}\right)}\right|, \quad \theta_{k}=2 \pi k / N$ is shown
a)
b)

Discrete Fourier Transform (DFT)

It is discrete both ways - forward and inverse!

- A signal $x[n]$ defined for $-\infty<n<\infty$
- Its spectrum $X\left(e^{j \theta}\right)$ defined for continuous $0 \leq \theta<2 \pi$
- Life is short ...
\longrightarrow Let us take a fragment of $x[n]: x_{0}[n], n=0,1, \ldots, N-1$

$$
x_{0}[n]=x[n] g[n], \text { where } g[n]=\left\{\begin{array}{ccc}
1 & \text { for } & n=0,1, \ldots, N-1 \\
0 & \text { for } & \text { others } n
\end{array}\right.
$$

$g[n]$ - window (gate?) function (here: a rectangular window) ($w[n]$ we reserve for white noise)
\longrightarrow We take only N values of $\theta_{k}=\frac{2 \pi}{N} k, \quad k=0,1, \ldots, N-1$

$$
x_{0}\left(\mathrm{e}^{\mathrm{j} \theta_{k}}\right)=\sum_{n=0}^{N-1} x_{0}(n) \mathrm{e}^{-\mathrm{j} n \theta_{k}}=\sum_{n=0}^{N-1} x_{0}(n) \mathrm{e}^{-\mathrm{j} 2 \pi n k / N}
$$

DFT properties

extras w.r.t. FT properties
Orthogonality of basis functions over N samples - (see next slide)
Periodicity As we sample the spectrum, the reconstructed signal is periodic with period N. If we compute IDFT for $-\infty<n<\infty$...

- A non-periodic signal was reconstructed as periodic
- A periodic signal was reconstructed as N-periodic

b)

DFT as an orthogonal transform

An orthogonal transform (e.g. DFT) is a decomposition of a function (signal) on a set of orthogonal basis functions $\phi_{k}[n]$.

$$
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} A(k) \cdot \phi_{k}[n]
$$

Because of $\phi_{k}[n]$ orthogonality, $A(k)$ are easy to calculate:

$$
A(k)=\sum_{n=0}^{N-1} x(n) \cdot \phi_{k}^{*}(n)
$$

Basis sequences (transform kernel) have to be orthogonal:

$$
\frac{1}{N} \sum_{k=0}^{N-1} \phi_{k}(n) \cdot \phi_{m}^{*}(n)=\left\{\begin{array}{ll}
1 & m=k \\
0 & \text { otherwise }
\end{array}\right. \text { Scalar product is zero = orthogonal! }
$$

DFT basis functions $\phi_{k}(n)=\mathrm{e}^{-\mathrm{j} n \theta_{k}}=\mathrm{e}^{-\mathrm{j} 2 \pi n k / N}$ are orthogonal - we chose θ_{k} so that they be!

Inverse DFT

a nice math exercise
Take forward DFT definition as a linear equation set, with $x_{0}[n]$ as unknowns.

$$
x_{0}(k) \quad=\quad \sum_{n=0}^{N-1} x_{0}(n) \mathrm{e}^{-\mathrm{j} 2 \pi n k / N}
$$

Inverse DFT

a nice math exercise
Take forward DFT definition as a linear equation set, with $x_{0}[n]$ as unknowns. When we multiply both sides by $\mathrm{e}^{\mathrm{j} 2 \pi r k / N}, r=0,1, \ldots, N-1$ and sum for $k=0,1, \ldots, N-1$

$$
\sum_{k=0}^{N-1} x_{0}(k) \mathrm{e}^{\mathrm{j} 2 \pi r k / N}=\sum_{k=0}^{N-1}\left[\sum_{n=0}^{N-1} x_{0}(n) \mathrm{e}^{-\mathrm{j} 2 \pi n k / N}\right] \mathrm{e}^{\mathrm{j} 2 \pi r k / N}=
$$

Will we get $x_{0}(n)$?

Inverse DFT

a nice math exercise

Take forward DFT definition as a linear equation set, with $x_{0}[n]$ as unknowns. When we multiply both sides by $\mathrm{e}^{\mathrm{j} 2 \pi r k / N}, r=0,1, \ldots, N-1$ and sum for $k=0,1, \ldots, N-1$

$$
\begin{aligned}
& \sum_{k=0}^{N-1} x_{0}(k) \mathrm{e}^{\mathrm{j} 2 \pi r k / N}=\sum_{k=0}^{N-1}\left[\sum_{n=0}^{N-1} x_{0}(n) \mathrm{e}^{-\mathrm{j} 2 \pi n k / N}\right] \mathrm{e}^{\mathrm{j} 2 \pi r k / N}= \\
& =\sum_{k=0}^{N-1} \sum_{n=0}^{N-1} x_{0}(n) \mathrm{e}^{\mathrm{j} 2 \pi k(r-n) / N}=\sum_{n=0}^{N-1} x_{0}(n) \sum_{k=0}^{N-1} \mathrm{e}^{\mathrm{j} 2 \pi k(r-n) / N}
\end{aligned}
$$

Will we get $x_{0}(n)$?

Inverse DFT

a nice math exercise
Take forward DFT definition as a linear equation set, with $x_{0}[n]$ as unknowns. When we multiply both sides by $\mathrm{e}^{\mathrm{j} 2 \pi r k / N}, r=0,1, \ldots, N-1$ and sum for $k=0,1, \ldots, N-1$

$$
\begin{aligned}
& \sum_{k=0}^{N-1} x_{0}(k) \mathrm{e}^{\mathrm{j} 2 \pi r k / N}=\sum_{k=0}^{N-1}\left[\sum_{n=0}^{N-1} x_{0}(n) \mathrm{e}^{-\mathrm{j} 2 \pi n k / N}\right] \mathrm{e}^{\mathrm{j} 2 \pi r k / N}= \\
& =\sum_{k=0}^{N-1} \sum_{n=0}^{N-1} x_{0}(n) \mathrm{e}^{\mathrm{j} 2 \pi k(r-n) / N}=\sum_{n=0}^{N-1} x_{0}(n) \sum_{k=0}^{N-1} \mathrm{e}^{\mathrm{j} 2 \pi k(r-n) / N}
\end{aligned}
$$

Will we get $x_{0}(n)$? Simple! Orthogonality of basis helps - the second sum is mainly 0 :

$$
\sum_{k=0}^{N-1} \mathrm{e}^{\mathrm{j} 2 \pi k(r-n) / N}=\left\{\begin{array}{ll}
N, & r=n \\
0, & r \neq n
\end{array} \Rightarrow \sum_{k=0}^{N-1} x_{0}(k) \mathrm{e}^{\mathrm{j} 2 \pi r k / N}=N x_{0}(r), \quad r=0,1, \ldots, N-1\right.
$$

Inverse DFT

a nice math exercise
Take forward DFT definition as a linear equation set, with $x_{0}[n]$ as unknowns. When we multiply both sides by $\mathrm{e}^{\mathrm{j} 2 \pi r k / N}, r=0,1, \ldots, N-1$ and sum for $k=0,1, \ldots, N-1$

$$
\begin{aligned}
& \sum_{k=0}^{N-1} x_{0}(k) \mathrm{e}^{\mathrm{j} 2 \pi r k / N}=\sum_{k=0}^{N-1}\left[\sum_{n=0}^{N-1} x_{0}(n) \mathrm{e}^{-\mathrm{j} 2 \pi n k / N}\right] \mathrm{e}^{\mathrm{j} 2 \pi r k / N}= \\
& =\sum_{k=0}^{N-1} \sum_{n=0}^{N-1} x_{0}(n) \mathrm{e}^{\mathrm{j} 2 \pi k(r-n) / N}=\sum_{n=0}^{N-1} x_{0}(n) \sum_{k=0}^{N-1} \mathrm{e}^{\mathrm{j} 2 \pi k(r-n) / N}
\end{aligned}
$$

Will we get $x_{0}(n)$? Simple! Orthogonality of basis helps - the second sum is mainly 0 :

$$
\begin{gathered}
\sum_{k=0}^{N-1} \mathrm{e}^{\mathrm{j} 2 \pi k(r-n) / N}=\left\{\begin{array}{cc}
N, & r=n \\
0, & r \neq n
\end{array} \Rightarrow \sum_{k=0}^{N-1} x_{0}(k) \mathrm{e}^{\mathrm{j} 2 \pi r k / N}=N x_{0}(r), \quad r=0,1, \ldots, N-1\right. \\
\\
x_{0}(n)=\frac{1}{N} \sum_{k=0}^{N-1} x_{0}(k) \mathrm{e}^{\mathrm{j} 2 \pi n k / N}, \quad n=0,1, \ldots, N-1
\end{gathered}
$$

So IDFT is almost the same as DFT - remove minus and scale by $1 / N$.

Forward and Inverse DFT - transformation matrix

x and $\mathcal{F}(x)$ are sets of N numbers - i.e. vectors in N -dimensional space.

$$
\begin{array}{rr}
\mathcal{F}(x)= & F \cdot x \\
F^{-1} \cdot \mathcal{F}(x)=F^{-1} \cdot F \cdot x \\
F^{-1} \cdot \mathcal{F}(x)= & x
\end{array}
$$

algebraic trivia:
How to construct F matrix? $F_{k n}=e^{-j 2 \pi n k / N}$
What is F^{-1} ? (not-so-trivial, but see IDFT slide)
Note nice properties of F matrix...

Entertainment maths

When we define \mathcal{F} as mathematicians like it - with factor of $1 / \sqrt{N}$ at both forward and inverse transform, then:

- $\mathcal{F}(\mathcal{F}(x))$ gives $x(-n)$
- $\mathcal{F}(\mathcal{F}(\mathcal{F}(\mathcal{F}(x))))$ gives again x
- $\mathcal{F}(\mathcal{F}(\mathcal{F}(x)))$ gives $\mathcal{F}^{-1}(x)$

The same happens with F matrix, of course.

Simple DFT matrices

- $N=1 \ldots$
- $N=2 \longrightarrow\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$
$-N=4 \longrightarrow\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i\end{array}\right]$
If you remember this, you may implement DFT with order 1,2 or 3 without any multiplication (with pencil and paper or with a digital circuit).

Problems to be studied

What happens to the spectrum (and DFT) when

- Signal is inverted in time $x_{1}(n)=x(-n)$
- Signal is upsampled by factor of two $x_{1}(2 n)=x(n) ; x_{1}(2 n+1)=0$ (or three, or more)
- Signal is extended with zeros (zero-padded) to a double/triple/... length
- Signal is decimated (downsampled) $x_{1}(n)=x(2 n)$; odd samples $x(2 n+1)$ are discarded
- Signal is modulated with $(-1)^{n}$, with a complex $\operatorname{cosine} e^{j \theta_{0} n}$, real $\operatorname{cosine} \cos \left(\theta_{0} n\right)$ or real sine

Decimation

When Roman soldiers ran away chased by Spartakus, Marcus Licinius Krassus ordered to kill one out of each ten - deci - of them. The morale has risen, and next time they were more eager to be killed in the battlefield. In three years, they defeated Spartakus at the Silarus river.

The decimation factor (defined as $N_{\text {original }} / N_{\text {left }}$) was $10 / 9$ in that case - in signal practice the factor is usually 2,4 , or even 2^{K}

