EDISP (NWL3)
 (English) Digital Signal Processing
 DFT Windowing, FFT

October 19, 2016

DFT resolution 1

- N-point DFT \longrightarrow frequency sampled at $\theta_{k}=\frac{2 \pi k}{N}$, so the resolution is f_{s} / N
- If we want more, we use $N_{1}>N$ filling with zeros (zero-padding)
- but IDFT will give N_{1}-periodic signal
- and the spectrum will have sidelobes

DFT resolution 2a: 16pt DFT

$\mathrm{f} 1=\mathrm{n} / 16 ; \operatorname{stem}\left(\mathrm{f} 1, \mathrm{abs}\left(\mathrm{fft}\left(\sin \left(\mathrm{n}^{*} \mathrm{pi} / 2\right)\right)\right)\right)$

DFT resolution 2b: 64pt DFT (zero-padded 16pt signal)

Limited observation time

For DFT we used to cut a fragment of the signal

$$
x_{0}[n]=x[n] g[n], \text { where } g[n]= \begin{cases}1 & \text { for } \\ 0 & \text { for } \\ 0,1, \ldots, N-1 \\ \text { other } n\end{cases}
$$

$g[n]$ is a window function. Here - a boxcar window Window effect:

- selection of a signal fragment
- $x[n] \cdot g[n]$ in time $\longrightarrow X(\theta) * G(\theta)$ in spectral domain \longrightarrow sidelobes or spectral leakage

Windowing a pure cosine

Example to be done on slide，temporarily on blackboard（：－）．

Leakage example

Window (apodization) functions

Raised cosine window family

- Hann window: Julius von Hann, 1839-1921, Austrian meteorologist; hanning is a verb form (to hann) $w(n)=0.5\left(1-\cos \left(\frac{2 \pi n}{N-1}\right)\right)$
- Hamming window: Richard Hamming, 1915-1998, American mathematician; $w(n)=0.53836-0.46164 \cos \left(\frac{2 \pi n}{N-1}\right)$
- Blackman window $w(n)=0.42-0.5 \cos \left(\frac{2 \pi n}{N-1}\right)+0.08 \cos \left(\frac{4 \pi n}{N-1}\right)$

Kaiser window

(D. Slepian, H.O. Pollak, H.J. Landau, around 1961, Prolate spheroidal wave functions ...)

- time limited sequence with energy concentrated in finite frequency interval
- a family of windows with many degrees of freedom
- Kaiser (1974) - an approximation to optimal window: standard method to compute the optimal window was numerically ill-conditioned.

$$
w_{n}=\left\{\begin{array}{cc}
\frac{I_{0}\left(\alpha \sqrt{1-\left(\frac{2 n}{N}-1\right)^{2}}\right)}{I_{0}(\alpha)} & \text { if } 0 \leq n \leq N \\
0 & \text { otherwise }
\end{array}\right.
$$

I_{0} - zeroth order modified Bessel function of the first kind,

- α (real number) determines the shape of the window:
- $\alpha=0$ gives Boxcar,
- $\alpha=4$ gives -30 dB first sidelobe, -50 asymptotic,
- $\alpha=8$ gives -60 dB first sidelobe, -90 asymptotic,

Kaiser window

Fast DFT algorithms \longrightarrow FFT

- Direct computation with pre-computed twiddle factors
$W_{N}^{k n}=\left(W_{N}\right)^{k n}=\left(e^{-j 2 \pi / N}\right)^{k n}$

$$
x\left(e^{j \theta_{k}}\right)=\sum_{n=0}^{N-1} x(n)\left(W_{N}\right)^{k n}
$$

\longrightarrow complexity: N^{2} complex multiplications \& additions

- Goertzel algorithm: $X(k)=y_{k}(N)$, where

$$
y_{k}(n)=\sum_{r=0}^{N-1} x(r) W_{N}^{-k(n-r)}
$$

\longrightarrow filtering: $y_{k}(n)=x(n)+y_{k}(n-1) \cdot W_{N}^{-k}$
Also N^{2}, but after decomposition majority is real \times real (see next slide).
Useful when not all N frequencies are needed.

- Divide-by-two (or decimation) in time \longrightarrow FFT algorithm, complexity $N \log _{2}(N)$

Goertzel algorithm (1958)

Calculate a single sample of DFT (at $\omega=\omega_{k}$) by filtering
Gerald Goertzel (1919-2002), theoretical physicist, worked with Manhattan Project and later Sage Instruments and IBM

- A convolution with sinusoid: $s(n)=x(n)+2 \cos \left(\theta_{k}\right) s(n-1)-s(n-2)$
- After N samples $X(k)$ is computed as $X(k)=y(N)=s(n)-e^{-j \theta_{k}} s(n-1)$

$$
\begin{aligned}
& W_{N}^{k}=\left(e^{\frac{-j 2 \pi}{N}}\right)^{k}=e^{-j \theta_{k}} \\
& W^{\prime}=W_{N}^{-k}+W_{N}^{k}=2 \cos \left(\frac{2 \pi k}{N}\right)=2 \cos \left(\theta_{k}\right) \\
& -1=W_{N}^{k} \cdot W_{N}^{-k}
\end{aligned}
$$

... and many versions with special tricks

Fast DFT algorithms \longrightarrow FFT

Decimation in time FFT (first stage):

$$
\begin{gathered}
X(k)=\sum_{n=0}^{N-1} x(n) W_{N}^{n k}= \\
=\sum_{\text {neven }} x(n) W_{N}^{n k}+\sum_{\text {nodd }} x(n) W_{N}^{n k}= \\
=\sum_{r=0}^{N / 2-1} x(2 r)\left(W_{N / 2}\right)^{r k}+W_{N}^{k} \sum_{r=0}^{N / 2-1} x(2 r+1)\left(W_{N / 2}\right)^{r k}
\end{gathered}
$$

radix-2 FFT

$$
\begin{gathered}
X(k)=\sum_{n \text { even }} x(n) W_{N}^{n k}+\sum_{n o d d} x(n) W_{N}^{n k}= \\
\sum_{r=0}^{N / 2-1} x(2 r)\left(W_{N / 2}\right)^{r k}+W_{N}^{k} \sum_{r=0}^{N / 2-1} x(2 r+1)\left(W_{N / 2}\right)^{r k}
\end{gathered}
$$

- If $N=2^{L} \ldots$ We can continue with this trick - decimating each half into sub-halves, each sub-half into sub-sub ... L times
- for $k>N / 2, W_{N}^{k}=-W_{N}^{k-N / 2}$ and $\mathrm{FT}_{N / 2}$ is periodic with period N/2
- DFT with size 1 is rather trivial

Effect: We have L layers of $N / 2$ butterflies. Each butterfly is one multiplication, one addition, one subtraction. In the result, we have $O\left(N \log _{2} N\right)$ operations

FFT inventors

James W. Cooley and John W. Tukey, "An algorithm for the machine calculation of complex Fourier series," Math. Comput. 19, pp. 297-301 (1965).

8 -point radix-2 FFT

8-point radix-2 FFT

8-point radix-2 FFT

8-point radix-2 FFT

Indexing for FFT

How to describe the sequence of numbers: $0,4,2,6,1,5,3,7$?

- $0=000_{2}$ is at position 000_{2}
- $4=100_{2}$ is at position 001_{2}
- $2=010_{2}$ is at position 010_{2}
- $6=110_{2}$ is at position 011_{2}
- $1=001_{2}$ is at position 100_{2}
- $5=101_{2}$ is at position 101_{2}
- $3=011_{2}$ is at position 110_{2}
- $7=111_{2}$ is at position 111_{2}
\longrightarrow bit-reversal does the job!
Processors designed for FFT do have the bit-reversal mode of indexing. (And they do a butterfly in one or two cycles)

Decimation in frequency FFT

- We split the definition formula for k even $(=2 r)$ or odd $(=2 r+1)$
- We note that $W_{N}^{2 n r}=W_{N / 2}^{n r}$ or $W_{N}^{n(2 r+1)}=W_{N}^{n} \cdot W_{N / 2}^{n r}$
- Further, for $n>N / 2 W_{N}^{n}=-W_{N}^{n-N / 2}$
- and so on - please sketch the DIF FFT diagram by yourselves
\longrightarrow here, we need to re-index the frequencies...

Specials

- Non-radix2 FFT - slower than radix2, but still faster than direct
- Chirp-z transform - one use of it is to calculate FT for θ 's not equal to $2 \pi / N$
- Non-uniform FFT ...
- FFTW - the Fastest FFT in the West - a free library, used by many free and commercial products (Frigo \& Johnson from MIT)
- FFTS - in the South - (New Zealand)

Summary

Fourier transforms:

- DTFT - spectrum of a discrete-time signal (defined for a limited-energy signal or a limited mean power signal in a different manner) periodic, continuous or discrete function of θ
- DFT - samples of DTFT of a limited duration signal (or a segment....) periodic, discrete $X(k)$
- FFT - a trick (method[s]) to compute DFT efficiently

To window or not to window?

- If we need to analyse the signal - YES,
- If we need to manipulate spectrum and then reconstruct the signal back - NO.

