EDISP (2D sig) (English) Digital Signal Processing Two-dimensional signals & filters lecture

May 31, 2017

Multidimensional signals

- ▶ Analogue K-D signal $x_a(t_1, t_2, t_3, ..., t_K)$, t_k not necessarily time.
- ▶ Discretization (sampling) $\longrightarrow x(n_1, n_2, n_3, ..., n_K)$, some signals are already discrete!
- ▶ sampling periods $T_{s,k} \longrightarrow$ sampling frequencies $f_{s,k} = \frac{1}{T_{s,k}}$ not necessarily equal; (e.g some scanners have different h & v resolutions) if t_k is spatial, $t_{s,k}$ is spatial frequency
- Examples
 - 2-D picture
 - linear antenna array (t₁ discrete or continuous space, t₂ continuous time)
 - pulsed radar signal ("slow time" and "fast time")

ULA - Uniform Linear Array (of antennas)

SDMA (a.k.a. BDMA) - Space (Beam) Division Multiple Access

Two dimensions in classsical radar

Image – a 2-D signal – and its 2-D DFT

- $T_{s,1}$, $T_{s,2}$ pixel dimensions; $f_{s,1}$, $f_{s,2}$ resolution (dpi, lines/mm)
- Fourier spectrum:

$$X(e^{j\theta_1}, e^{j\theta_2}) = \sum_{n_1 = -\infty}^{+\infty} \sum_{n_2 = -\infty}^{+\infty} x(n_1, n_2) e^{-jn_1\theta_1} e^{-jn_1\theta_2}$$

$$\theta_k = \omega_k \cdot T_{sk} = rac{2\pi f_k}{f_{sk}}$$
 – normalized angular frequency

▶ finite picture → represented by a discrete spectrum

$$X(k_1, k_2) = \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} x(n_1, n_2) e^{-j2\pi k_1 n_1/N_1} e^{-j2\pi k_2 n_2/N_2}$$

reconstruction by a discrete Fourier series

$$X(n_1, n_2) = \frac{1}{N_1 N_2} \sum_{k_1=0}^{N_1-1} \sum_{k_2=0}^{N_2-1} X(k_1, k_2) e^{j2\pi k_1 n_1/N_1} e^{j2\pi k_2 n_2/N_2}$$

image sampling example

2-D DFT example

2-D LTI systems

Linear and ($Time = shift in n_k$) Invariant (we extend the definition for 1-D systems)

- ▶ allows for analysis by impulse response (unit impulse: $\delta(m,n) = 1$ if m = n = 0, = 1 otherwise) impulse response is sometimes called Point Spread Function PSF (especially in optics)
- causality meaningful if one of dimensions is time-related
- delay in spatial dimension, zero-delay filter is the best
- 2-D convolution (linear filtering)

$$y(n_1,n_2) = \sum_{m_1=-\infty}^{+\infty} \sum_{m_2=-\infty}^{+\infty} h(m_1, m_2) \cdot x(n_1-m_1, n_2-m_2)$$

• if $h(m_1, m_2) = h_1(m_1) \cdot h_2(m_2)$, we may decompose 2-D filtering into 2x(1-D) (important for long impulse responses)

Beamforming

 $x_k(t) = A(t)cos(\Omega t + rac{nd}{\lambda}sin\theta) \longrightarrow x_k^{bb}(t) = A(t)e^{jrac{nd}{\lambda}sin\theta}$

Beamforming

Application - beamforming in SDMA

Application - ocean currents monitoring (WERA)

WERA is a HF radar using electromagnetic waves between 6 and 30 MHz (50 m to 10 m wave length) to measure surface current velocities, ocean wave height (spectra) and wind.

Images - practical remarks

We concentrate on monochrome images (B/W photos, print, raw images in medical, radar, sonar, satellite technology). Color images add some complexity, unimportant for the signal processing basics.

- Understanding frequency concept:
 - Horizontal frequency changes in the horizontal direction (trunks in the forest)
 - Vertical frequency changes in the vertical direction (horizon)
 - High frequencies sharp edges, small features
 - Low frequencies soft edges, large areas of same intensity

Filtering

Why:

- resizing by interpolation/decimation (LP)
- removing noise or interference (LP)
- sharpening images (slightly HP)
- detecting edges (HP)

Filtering methods:

- Spatial (image) domain: convolution=weighted average of neighboring pixels
- Frequency domain: masking out (zeroing) parts of the 2D spectrum
- Nonlinear filters: some nonlinear manipulation on the set of neighboring pixels (e.g median)

How to behave at the image boundary with spatial filters?

- assume zeros outside (effect:dark areas at the boundaries)
- repeat last data row/column
- circular symmetry (effect: sky under the ground?)
- mirror symmetry (best for photo type images)

Spatial filter (2D convolution)

Operation on some vicinity of the current pixel.

(total 9 multiplications)

$$y(m,n) = \sum_{i=-\infty}^{+\infty} \sum_{i=-\infty}^{+\infty} x(i,j) \cdot h(m-i,n-j)$$

Edge problem

Assume zero outside

Edge problem

Assume circular copy

Edge problem

Assume flipped (mirror) copy

Spectral domain filtering (by FFT)

Operation on whole picture.

Image denoising

- AWGN linear filtering
- impulsive noise ("salt and pepper") nonlinear methods

Median filter (nonlinear)

- removing impulses
- preserving edges
- ▶ method: replace a pixel with median from its vicinity (3x3,5x5, ...)

Median filter

Image brightness normalization

Other (non-image) uses

- ► WERA array radar: spatial freq = direction, time freq = Doppler
- ► Smart antenna: spatial filter = selection of a user direction

Prepare for the lab!

- Understanding frequency in 2D
- Calculate a simple 2D Fourier transform: practice on 2x2 or 4x4

	0	0	0	0
nioturoo:	1	1	1	1
pictures:	0	0	0	0
	1	1	1	1

0	1	0	1
0	1	0	1
0	1	0	1
0	1	0	1

1	0	1	0			
0	1	0	1			
1	0	1	0			
0	1	0	1			

- Apply a linear filter to above pictures.
- Understand a median. Why it is a nonlinear operation?