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Randomness

We describe as “random” effects that are too complex to precisely analyze in
practice, or simply unknown:

I physical noise: thermal, mechanical, acoustic, radio/radar
I somebody’s decisions made from data unknown (to us): aircraft

pilotage, human voice

But we know something about the constraints: system bandwidth, physical
dependencies, vocal tract properties.
We describe:

value constraints as probability

dependencies as conditional probability −→ correlation



Description of a random variable
ξ is a random variable taking some value x ∈ X ; for each value x there is
some probability that ξ = x .
We may imagine ξ as the ensemble of all possible values together with their
probabilities, or as the “set of all possible experiments” (realizations.
Imagine the weather:

I what we see this year is one realization x
I what may happen during any year is random variable ξ

I it is a variable from a multidimensional space X of “whole yearly
weather”

CDF stochastic variable ξ is described by Fξ(x) – the probability
that ξ≤ x ; Fξ(x) is a Cumulative Density Function (or
Cumulative Distribution Function)

PDF Probability Density Function is more intuitive, defined as

fξ(x) =
dFξ(x)

dx
expectation or probabilistic mean, or mean value:

µξ = E[ξ] =
∫

∞

−∞
xfξ(x)dx

mean square (MS) value Pξ = E[ξ2(t)] =
∫

∞

−∞
x2fξdx

variance (mean power of variable component)
σ2

ξ
= E

[
(ξ−µξ)

2
]
=

∫
∞

−∞
[x−µξ(t)]

2fξ(x)dx
covariance is a measure of relation between two variables ξ and η:

cov(ξ,η) = E[ξ ·η]



Stochastic signal basics (discrete time)
ξ[n] – a sequence of stochastic variables ξ(n) (as a DT signal x[n] is a
sequence of numbers x(n))
Imagine the weather again, concentrating on a scalar value of “maximum
temperature of a day”:

I what we see this year is one realization x[n]
I max temperature today is one sample x(n) at n =today
I max temperature on 11 January is a random variable ξ(n) at n =11 Jan
I max temperature each day of the year is a random signal/process ξ[n]

signal or process: ξ[n] – a set of all possible realizations x[n]
realization: x[n] one sequence, being particular member of the set ξ[n]

process value at the moment n1, ξ(n1) is a stochastic variable, described
with its PDF fξ(x(n1);n1)

−→ for the full description of ξ(n) we need all the possible
multidimensional (joint) PDF’s
fξ(x(n1), x(n2), . . . ; n1, n2, . . .)

practical view: we narrow our interest to the two-dimensional PDF
fξ(x(n1), x(n2); n1, n2) to be able to tell the relation between
the process values at two points in time.

For the stochastic (random) signal, we use the same description with
expectation (called mean, or precisely probabilistic mean), MS value,
variance, covariance - but they are in general dependent on time: µξ(n), etc.



Complex signal

Complex signal
ξ[n] = ξR[n] + j ξI [n]

Example: complex filtering (convolution of complex signals)

h[n] = hR(n) + jhI [n]

η[n] = h[n] ∗ ξ[n] −→ η (n) =
n

∑
m=0

h(m)ξ(n − m)

ηR [n] = hR [n] ∗ ξR [n] − h I [n] ∗ξ I [n]
η I [n] = h I [n] ∗ ξR [n] + hR [n] ∗ ξ I [n]



We describe complex random signals with....
I Mean value

µξ (n) = E [ξ(n)] = E [ξR(n)] + j E [ξ I(n)] = µξR
(n) + j µξI

(n)

I MS value (mean power)

Pξ(n) = E [ξ(n) ξ
∗(n) ] = E

[
|ξ(n) |2

]
I Variance

σ
2
ξ
(n) = E

{
[ξ(n) − µξ(n) ] [ξ

∗(n) − µ∗
ξ
(n) ]

}
= E [ |ξ(n)|2 − | µξ(n)|2 ]

I Autocorrelation is a measure of dependency between signal values in
different time instants

Rξξ(n1, n2) = E [ξ∗(n1)ξ(n2)]

I Autocovariance

Cξξ(n1, n2) = E
{
[ξ∗(n1) − µ∗

ξ
(n1)] [ξ(n2) − µξ(n2)]

}



Stationarity and ergodicity

Signal is stationary when it fulfills the following

µξ(n) = µξ = const
Rξξ(n1, n2) = Rξξ(m), m = n2 − n1

Time-domain mean is defined as: < x[n]> = limN→∞
1

2N+1 ∑
N
n=−N x(n)

Time-domain correlation is defined as:
ψxx(m) = limN→∞

1
2N+1 ∑

N
n=−N x∗(n)x(n+m)

Signal is ergodic when it fulfills the following

< x[n]> = µξ = const
ψxx(m) = Rξξ (m), m = n2 − n1

In other words, ergodicity means that we can draw conclusions on
probabilistic mean, variance, and autocorrelation from time-domain mean,
mean power, autocorrelation. We usually have to assume the signal is
ergodic, no simple test exists ....



Power spectrum density (PSD)

For a stationary ξ[n], Cξξ(n1, n2) = Cξξ(m), m = n2−n1.

Cξξ(m) = E
{
[ξ∗(n) − µ∗

ξ
] [ξ(n + m) − µξ]

}
If our signal ξ[n] is zero-mean: µξ = 0 then Cξξ (m) = Rξξ(m)
(if not, use ξ1[n] = ξ[n] − µξ).
Power spectrum density of a stationary discrete signal ξ[n] (MS convergent if
σ2

ξ
is bounded)

Sξξ(θ) =
∞

∑
m=−∞

Cξξ(m)e−jmθ

I Periodic (over 2π)
I (if ξ[n] is real) −→ Sξξ(θ)≥ 0, symmetric

I Cξξ(m) = 1
2π

∫
π

−π
Sξξ (θ)e jmθdθ



Autocovariance and PSD estimation
ξ[n] (stationary, ergodic) −→ estimation of properties from N (finite number)
of samples of x[n].

I mean value estimate

µ̂ξ =
1

N

N−1

∑
n=0

x(n)

I Variance estimate

σ̂
2
ξ
=

1
N

N−1

∑
n=0

[x∗(n) − µ̂∗
ξ
] [x(n) − µ̂ξ]

I Autocovariance estimate (equal to autocorrelation with µξ = 0)

R̂ξξ(m) =
1
N

N−|m|−1

∑
n=0

x∗(n)x(n+m), −(N−1)≤m≤N−1 (or, maybe 1
N−|m|?)

I PSD estimate

Ŝξξ(θ) =
N−1

∑
m=−(N−1)

R̂ξξ(m)e−jmθ



Estimation accuracy

The actual values µξ, ξ[n], µ̂ξ, Rξξ(m), Sξξ(θ) are constant (=not random)
From different realizations x[n] we obtain different estimates.
Estimates σ̂2

ξ
, R̂ξξ(m), Ŝξξ(θ) are random −→ How to measure the accuracy

of estimate?

bias B = α − E[α̂]

variance var [α̂] = σ2
α̂
= E {[α̂∗ − E (α̂)∗] [α − E (α̂)] }

MS error E [|α̂ − α|2] = B2 + σ2
α̂

consistency limN→∞ var [α̂]→ 0 and limN→∞ B [α̂]→ 0

If ξ[n] is stationary and gaussian . . .
I mean value estimate µ̂ξ = 1

N ∑
N−1
n=0 x(n) −→ unbiased, with variance

σ2
ξ
/N

I variance estimate σ̂2
ξ
= 1

N ∑
N−1
n=0 [x∗(n) − µ̂∗

ξ
] [x(n) − µ̂ξ]

−→ bias B[σ̂2
ξ
] = σ2

ξ
/N, variance var [σ̂2

ξ
]∼ 1/N (consistent)



Autocovariance and PSD estimate properties

R̂ξξ(m) = 1
N ∑

N−|m|−1
n=0 x∗(n)x(n+m) is biased:

E[R̂ξξ(m)] =
N−|m|

N
Rξξ(m)

var [R̂ξξ(m)]≈ 1
N

∞

∑
r=−∞

[
R2

ξξ
(r) + Rξξ(r + m)Rξξ(r − m)

]
, N � m

Ŝξξ(θ) = ∑
N−1
m=−(N−1) R̂ξξ(m)e−jmθ:

E[Ŝξξ(θ)] =
N−1

∑
m=−(N−1)

N−|m|
N

Rξξ(m)e−jmθ

var [Ŝξξ(θ)] = S2
ξξ
(θ)

{
1 +

[
sin N θ

N sin θ

]2
}

very large, estimate not consistent!



Periodogram

Periodogram is a method to estimate PSD that is faster!
As the ACF is estimated from the convolution

R̂ξξ[m] =

{
1
N x∗[m]∗ x[−m], |m| ≤ N − 1

0, |m| > N − 1

we may rewrite Ŝξξ(θ) using transforms (in the following x1[m] = x[−m])

Ŝξξ(θ) =
1
N
·X∗(e jθ ) ·X1(e

jθ )

X1(ejθ ) =
0

∑
n=−(N−1)

x1(n)e−jnθ =
N−1

∑
n=0

x1(−n)ejnθ =
N−1

∑
n=0

[x∗(n)e−jnθ ]∗= [X∗(e jθ )]∗

finally

Ŝξξ(θ) =
1
N
· |X(ejθ)|2

Further: we can transform N-sample sections of x∗[n], x1[n] and then
average periodograms, reducing variance.



Practical implementations of periodogram

I Choose FFT length to avoid cyclic efects
I Average K segments (of length M = N/K ) to reduce variance at the

cost of bias (Bartlett procedure).
I Add overlapping of segments and use non-rectangular window (Welch

procedure).

Ŝi
W (θ) =

1
MF

∣∣∣∣∣ M−1

∑
n=0

x i(n) g(n)e−jnθ

∣∣∣∣∣
2

, (i = 1,2, . . . ,K is a segment number)

F =
1

M

M−1

∑
n=0

g2(n) (energetic normalizing factor)

ŜWξξ(θ) =
1
K

K

∑
i=1

Ŝ
i
W (θ)



Filtering of random signals

process x1[n]−→ −→ y1[n] process
ξ[n] x2[n]−→ H(z) −→ y2[n] η[n]

. . . −→ −→ . . .

For a stationary ξ[n]:
I mean value:

µη = µξ

∞

∑
n=−∞

h(n) = µξ H(ejθ)|θ=0 (1)

I autocorrelation

Rηη(m) =
∞

∑
i=−∞

Rξξ(m − i)v(i) where v(i) =
∞

∑
k=−∞

h(k)h(k + i)

(2)
I power spectrum density

Sηη (θ) = Sξξ(θ)|H(ejθ)|2 (3)



Applications

I Analysis of AD conversion errors
I Analysis of arithmetic errors in filters
I Signal modelling −→ compression (LPC):

I on the compression side, a filter is tuned so that noise passed through it
has the properties of the signal being compressed;

I only filter coefficients are transmitted;
I signal is reconstructed from noise passed through a filter

I System modelling −→ identification
I Signal detection −→ matched filter (presence, time of arrival);

I a filter matched to signal x(n) has the impulse response h(n) = x(M−n);
such a filter maximizes the S/N ratio if the noise is gaussian and white

I if the noise is not white, we may whiten it with another filter (whitening
filter): we may model the noise as if it was white, but then filtered with a
filter with transfer function G(z); then the whitening filter will be 1/G(z)....


