ESPTR: Radar Basics

Jacek Misiurewicz

March 31, 2008

Prototype

Electromagnetic version

- 1865 James Clerk Maxwell theory of electromagnetic waves
- 1886 Heinrich Hertz experimental proof
- 1904 Christian Hülsmeyer *Telemobiloskop*: ship collision avoidance apparatus, patented in Germany and UK; demonstration at the Rhine river in Cologne, DE.

...

1939-1945 Home Chain and other installations

Radar equation

Transmit-reflect-receive-detect

Received power: radar range equation

$$P_r = \frac{P_t G_t A_r \sigma F^4}{(4\pi)^2 R_t^2 R_r^2}$$

- P_t transmitter power
- G_t gain of the transmitting antenna
- A_r effective aperture (area) of the receiving antenna
- σ radar cross section, or scattering coefficient, of the target
- F pattern propagation factor
- R_t distance from the transmitter to the target
- R_r distance from the target to the receiver.
- $2x \text{ range } \longrightarrow 2^4 = 16x \text{ power needed } \dots$

Signal model

Transmit:

$$x_T(t) = A_T(t)e^{j\phi_T(t)}$$

Receive:

$$x_R(t) = A_T(t - R(t)/c)e^{j\phi_T(t - R(t)/c)}$$

simple case:
$$\phi_T(t) = \omega t + \phi_M(t)$$
, $R(t) = R_0 + vt$

$$x_R(t) = A_T(t - R_0/c - vt/c)e^{j(\omega(t - R_0/c - vt/c) + \phi_M(t - R_0/c - vt/c))}$$

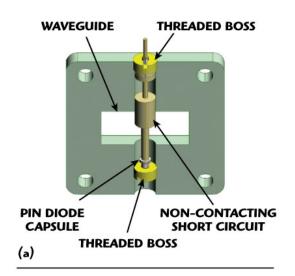
$$x_R(t) = A_T(t - R_0/c - vt/c)e^{j(\omega t)}e^{-j\omega(R_0/c)}e^{-j\omega vt/c}e^{j\phi_M(R_0/c + vt/c)}$$

$$x_R(t) = A_T(t - R_0/c - vt/c)e^{j\phi_M(R_0/c + vt/c)}e^{j(\omega t)}e^{-j\omega(R_0/c)}e^{-j\omega vt/c}$$

Detection

Maximize P_d (detection), keep P_{fa} (false alarm) low.

The threshold set above:


- Noise (thermal etc)
- Clutter (unwanted echoes)
- Multipath
- Jamming (intentionally malicoius transmitters)
- ▶ Interferences (other equipment, e.g. other radars)

Improvements: matched filter ($S\uparrow$), interference cancellation ($C\downarrow$)

Typical: SNR \approx 13 dB Adaptation: CFAR

Range measurement

- →signal delay measurement
 - Max unambiguous range limited by modulation period
 - Min range limited by transmit signal entering the receiver
 - Antenna separation
 - ► T/R switch + receiver safety (ionised gas + pin diode)

Velocity measurement

→ Doppler shift measurement

$$x_R(t) = A_T(t - R_0/c - vt/c)e^{j\phi_M(R_0/c + vt/c)}e^{j(\omega t)}e^{-j\omega(R_0/c)}e^{-j\omega vt/c}$$

- ► Min velocity: ground/meteo clutter
- Max velocity (frequency): (inverse of) modulation period

Angle measurement

- azimuth
- elevation

Methods

- Scanning: mechanical, electronic
- Monopulse techniques (multielement antenna)
 - ► Power ratio
 - Sigma-Delta (power)
 - ► Phased arrays